A CANAL SURFACE CONTAINING FOUR STRAIGHT LINES

Authors

  • Hellmuth STACHEL Vienna University of Technology

Abstract

A canal surface is the envelope of spheres with centers traversing a spatial curve called spine curve. The spheres contact the envelope along so-called characteristics, which are circles in general. If a canal surface contains two lines, then the spine curve is located on the bisector of these lines which in the case of skew lines is an orthogonal hyperbolic paraboloid. There are trivial cases of canal surfaces with infinitely many lines, the right cylinders, the right cones, and the one-sheeted hyperboloids of revolution. The only nontrivial case of a canal surface through four straight lines, that are not the limits of characteristics, is related to a Plücker conoid. The four given lines must be concyclic generators, i.e., they intersect each tangent plane of the conoid in four points lying on a circle. We are going to analyse and visualize this par ticular canal surface.

Downloads

Download data is not yet available.

References

Glaeser, G., Stachel, H., Odehnal, B. (2016). The Uni

verse

Conics. Springer Spectrum, Berlin,

Heidelberg.

Müller, E., Krames, J.L. (1931). Vorlesungen über

Darstellende Geometrie. Band III: Konstruktive Be

handlung der Regelflächen. B.G. Teubner, Leipzig.

Odehnal, B., Stachel, H., Glaeser, G. (2020). The

Universe of Quadrics. Springer Spectrum, Berlin,

Heidelberg.

Salmon, G., Fiedler, W. (1863). Die Elemente der

analytischen Geometrie des Raumes. B.G. Teubner,

Leip-zig.

Schilling, M. (1911). Catalog mathematischer Model

le. 7. Auflage, Martin Schilling, Leipzig.

Stachel, H. (1995). Unendlich viele Kugeln durch vier

Tangenten. Math. Pannonica 6, 55–66.

Stachel, H. (2022). Plücker's Conoid Revisited. G,

Slov. Cas. Geom. Graf. 19, no. 38, 21–34.

Wunderlich, W. (1967). Darstellende Geometrie II. BI

Mannheim,.

Downloads

Published

2024-06-30

Issue

Section

Theoretical Geometry and Graphics