A CANAL SURFACE CONTAINING FOUR STRAIGHT LINES
Abstract
A canal surface is the envelope of spheres with centers traversing a spatial curve called spine curve. The spheres contact the envelope along so-called characteristics, which are circles in general. If a canal surface contains two lines, then the spine curve is located on the bisector of these lines which in the case of skew lines is an orthogonal hyperbolic paraboloid. There are trivial cases of canal surfaces with infinitely many lines, the right cylinders, the right cones, and the one-sheeted hyperboloids of revolution. The only nontrivial case of a canal surface through four straight lines, that are not the limits of characteristics, is related to a Plücker conoid. The four given lines must be concyclic generators, i.e., they intersect each tangent plane of the conoid in four points lying on a circle. We are going to analyse and visualize this par ticular canal surface.
Downloads
References
Glaeser, G., Stachel, H., Odehnal, B. (2016). The Uni
verse
Conics. Springer Spectrum, Berlin,
Heidelberg.
Müller, E., Krames, J.L. (1931). Vorlesungen über
Darstellende Geometrie. Band III: Konstruktive Be
handlung der Regelflächen. B.G. Teubner, Leipzig.
Odehnal, B., Stachel, H., Glaeser, G. (2020). The
Universe of Quadrics. Springer Spectrum, Berlin,
Heidelberg.
Salmon, G., Fiedler, W. (1863). Die Elemente der
analytischen Geometrie des Raumes. B.G. Teubner,
Leip-zig.
Schilling, M. (1911). Catalog mathematischer Model
le. 7. Auflage, Martin Schilling, Leipzig.
Stachel, H. (1995). Unendlich viele Kugeln durch vier
Tangenten. Math. Pannonica 6, 55–66.
Stachel, H. (2022). Plücker's Conoid Revisited. G,
Slov. Cas. Geom. Graf. 19, no. 38, 21–34.
Wunderlich, W. (1967). Darstellende Geometrie II. BI
Mannheim,.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.