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Abstract: A canal surface is the envelope of spheres with centers traversing a spatial curve called spine 

curve. The spheres contact the envelope along so-called characteristics, which are circles in general. If a 

canal surface contains two lines, then the spine curve is located on the bisector of these lines which in the 

case of skew lines is an orthogonal hyperbolic paraboloid. There are trivial cases of canal surfaces with 

infinitely many lines, the right cylinders, the right cones, and the one-sheeted hyperboloids of revolution. The 

only nontrivial case of a canal surface through four straight lines, that are not the limits of characteristics, 

is related to a Plücker conoid. The four given lines must be concyclic generators, i.e., they intersect each 

tangent plane of the conoid in four points lying on a circle. We are going to analyse and visualize this par-

ticular canal surface. 

Key words: Canal surface, spine curve, Plücker’s conoid, pedal curve, concyclic generators. 

 

 

1. INTRODUCTION  

A canal surface or channel surface E is the envelope 

of a smooth one-parameter set of spheres with centers 

traversing a spatial curve called spine curve or directrix. 

The radii of the spheres can vary along the spine curve. 

Each enveloping sphere of the one-parametric set con-

tacts E along a circle called characteristic (Figure 1). 

Hence, E is traced by circles with the additional property 

that the tangent planes along each circle form a cone or 

cylinder or revolution. In limiting cases the sphere can be-

come a plane with a line as characteristic. 

 

   
 

Figure 1 A canal surface as envelope of spheres which contact 

the line g. The centers of the characteristics form the displayed 

curve m. 

 

Lemma 1. If all spheres of a canal surface contact a line, 

then all points of contact belong to the surface. 

Proof. Given a canal surface E, let P₁, P₂ be two suffi-

ciently close points of the spine curve q. Then the charac-

teristic of the sphere S₁ with center P₁ is the limit of the 

intersection with the sphere S₂ centered at P₂ when P₂ 

tends along q to P₁. The circle of intersection S₁∩S₂ lies 

in the plane of points with equal power with respect to 

(w.r.t., for short) the two spheres (note [1], p. 49). 

Let T₁ and T₂ be the respective pedal points of the com-

mon tangent g w.r.t. P₁ and P₂. Then, S₁ passes through 

T₁ and S₂ through T₂. Moreover, the midpoint of the seg-

ment T₁T₂ has equal power w.r.t. S₁ and S₂. This means, 

that the midpoint is coplanar with the circle of intersection 

 
1 A parabolic Dupin ring cyclide (see [3], Figure 10.18) 

contains four lines, but two of them are characteristics, one 

S₁∩S₂. Consequently, at the limit with P₂ → P₁ and T₂ → 
T₁ the point T₁ belongs to the characteristic of S₁. □ 

If all spheres of a canal surface contact two lines, then 

the spine curve must be located on the bisector of these 

lines, which in the case of skew lines is an orthogonal hy-

perbolic paraboloid and otherwise a pair of orthogonal 

planes (see Section 2.1). If all spheres contact three lines, 

then the spine curve belongs simultaneously to two bisec-

tors.  

There are trivial cases of canal surfaces which carry 

infinitely many lines: the right cylinders, the right cones, 

and the one-sheeted hyperboloids of revolution. In each 

case, the bisectors of any two lines meet at the axis. 

The only nontrivial case of a canal surface where all 

spheres contact four straight lines1 is related to a particu-

lar ruled surface of degree three, the Plücker conoid. As 

proved in [6], the four given lines must be concyclic gen-

erators of this surface. This means that they intersect each 

tangent plane of the conoid in four points lying on a circle 

and moreover on the ellipse, which is a component of the 

intersection between the conoid and the tangent plane (see 

Section 2.2).  

The goal of this paper is to analyse and to visualize this 

particular canal surface (Section 3). At the begin we recall 

the necessary properties of the Plücker conoid. 

 

 

 2. PLÜCKER’S CONOID 

 A Plücker conoid C (also known under the name cylin-

droid) is a ruled surface of degree three with a finite dou-

ble line and a director line at infinity (Figure 2). Using cyl-

inder coordinates (r, φ, z), the conoid can be given by the 

equation 

 z = c sin 2φ            (1) 

with a constant c ∈ R \ {0}. All generators of C are parallel 

to the xy-plane. The z-axis is the double line d of C and an 

axis of symmetry. The conoid contains the x-axis and the 

for each of the two possible generations of the cyclide as 

canal surfaces. 
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y-axis. These two lines c₁, c₂ are axes of symmetry of C 

and called central generators. 

 

 
 

Figure 2 Plücker's conoid C with central generators c₁ and c₂, 

torsal generators t₁ and t₂, the generator g through X, and the 

ellipse e in the tangent plane 𝜏𝑋 to C at the point X. 

 

The Plücker conoid C is traced by the x-axis under a 

motion which is composed from a rotation about the z-axis 

and a harmonic oscillation with double frequency along 

the z-axis [8]. 

The substitutions x = r cos φ and y = r sin φ in (1) yield 

the Cartesian equation 

 C:  (x² + y²) z – 2cxy = 0,             (2) 

which reveals that reflections in the planes x ± y = 0 map 

C onto itself. The origin is called the center of C. 

The right cylinder x² + y² = R² intersects the Plücker 

conoid C along a curve ccyl of degree four2 (see Figure 2), 

which in the cylinder's development appears as the Sine-

curve with amplitude c and wavelength Rπ. The genera-

tors of C connect opposite points of ccyl.3 The conoid is 

bounded by the planes z = ±c, which contact C along the 

torsal generators t₁ and t₂. Their distance |2c| is called the 

width of C. 

For the sake of simplicity, we assume that the xy-plane 

and all generators of C are horizontal and the z-axis is ver-

tical. In this sense, the top view stands for the image under 

vertical projection into the xy-plane; a prime will be used 

to indicate the top views of geometric objects. 

The top view in Figure 3 (left) reveals that the inter-

section of the Plücker's conoid C with any right cylinder Z 

through the double line d gives a curve e which in the cyl-

inder's development shows up as one period of a Sine 

curve. Therefore, e is an ellipse with principal vertices on 

the torsal generators. 

There exists a two-parameter set of ellipses e on the 

conoid C. They all have the same linear eccentricity c, as 

it equals the difference of the respective z-coordinates of 

 
2 The remaining part of the curve of intersection consists of the 

lines at infinity of the two complex conjugate planes x ± iy = 0. 

 
3 See models #96 – #100 of the collection of mathematical mod-

els at the Institute of Discrete Mathematics and Geometry, Vi-

enna University of Technology, https:// 

a principal vertex and the center of e ([2], p. 208). The 

secondary vertices of e are located on the central gener-

ators c₁ and c₂. Ellipses e ⊂ C with the same minor semi-

axis are congruent, and their planes have the same slope. 

  

 
 
Figure 3 The intersections of the conoid C with right cylinders 

Z through the double line d are ellipses e with the same eccen-

tricity. The generators of C meet e and intersect d orthogonally 

(left: top view, right: axonometric view) 

 

Lemma 2.  Let g₁, g₂, g₃ be three non-coplanar lines with 

an orthogonal transversal d such that no two of the three 

lines are parallel. Then, there exists a unique Plücker co-

noid C passing through these lines. 

Proof. We choose a right cylinder Z which passes through 

d and does not contact any of the given lines. Then their 

remaining points of intersection with Z span a plane that 

intersects Z along an ellipse e thus defining C as shown in 

Figure 3.             □ 

The remaining intersection between the cubic surface   
C and the plane of any ellipse e ⊂ C must be a line g pass-

ing through the common point of e and d (Figure 2). This 

generator g, which is horizontal and therefore parallel to 

the minor axis of e, shares with e another point X. This 

must be the point of contact between the conoid and the 

plane of e. In other words: The tangent plane 𝜏𝑋 to C at X 

intersects C beside the generator g along an ellipse e which 

appears in the top view as a circle e' = Z' through d'. 

The top view gives insight into another important 

property of the ellipse e ⊂ 𝜏𝑋 ∩ C (Figure 4). For all points 

P in space with the top view P' ∈ e' opposite to the top 

view d' of the double line, the pedal curve on C, i.e., the 

locus of pedal points of P on the generators of C, coincides 

with e. This holds since the right angles enclosed with gen-

erators of C appear in the top view again as right angles, 

provided that the spanned plane is not parallel to the dou-

ble line d. It means conversely that for each point of e the 

surface normal to C meets the vertical line through P'. We 

summarize. 

www.geometrie.tuwien.ac.at/modelle/models_show. 

php?mode=2&n=100&id=0, accessed 2024-02-20. All models 

originate from Schilling's collection [5]. 
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Lemma 3.  All pedal curves of Plücker's conoid C are pla-

nar. For points outside the double line the pedal curves 

are ellipses with the same eccentricity. 

 

 
 
Figure 4 The point X is the pedal point of the generator g with 

respect to all points P with the top view P'; the ellipse e ⊂ C is 

the pedal curve of P. 

 

 

2.1 Bisector of two skew lines 

A classical result states that the bisector of two skew 

lines ℓ₁, ℓ₂, i.e., the set of points X being equidistant to ℓ₁ 

and ℓ₂, is an orthogonal (or equilateral) hyperbolic para-

boloid (Figure 5). This is reported, e.g., in [4], p. 154, or 

in [3], p. 64. 

 

 
 
Figure 5 The bisector of two skew lines ℓ₁ and ℓ₂ is an orthog-

onal hyperbolic paraboloid P which contains the axes of sym-

metry c₁, c₂ of ℓ₁ and ℓ₂ as vertex generators. 

 

Suppose that the two lines ℓ₁, ℓ₂ are given by z = ±d   

and x sin φ = ±y cos φ. Then the distance of any space 

point X = (x, y, z) to ℓi satisfies 

 [d(Xℓi)]² = x² + y² + (z ∓ d)² – (x cos φ ± y sin φ)².   (3)  

Consequently, the bisector P of the two lines is defined by 

the equation [d(Xℓ₁)]² –  [d(Xℓ₂)]² = 0, i.e., 

 P :  2dz + xy sin 2φ = 0.                         (4) 

Conversely, the question for all pairs (ℓ₁, ℓ₂) of lines for 

which a given orthogonal hyperbolic paraboloid P is the 

bisector, was already answered in [5], p. 54. Their geo-

metric locus is the Plücker conoid 

C :  z = c sin 2φ   for   c =
sin 2

d
           (5) 

with the vertex generators of P as central generators and 

the axis of P as double line. For further details see [7]. 

 

 

2.2 Concyclic generators of Plücker's conoid 

Given a Plücker conoid C, let the ellipse e ⊂ C be the 

pedal curve of a point P. If a sphere S with the center P 

contacts some generators of C, then their pedal points 

w.r.t. P must have equal distances to P. Since they are lo-

cated in the plane of e, they belong to a circle k ⊂ S with 

an axis through P (compare with Figure 6). The circle k 

can share at most four points with the ellipse e. Therefore, 

at most four generators of C can contact a sphere with the 

center P. 

Definition 1. Four mutually different lines g₁, ..., g₄ are 

called concyclic if they belong to a Plücker conoid C and 

their points of intersection with any tangent plane 𝜏𝑋 to C 

are concyclic, i.e., located on a circle. 

 

 
 

Figure 6 The four generators g₁, ..., g₄ of C are concyclic. 

There exist infinitely many spheres that contact these genera-

tors. The displayed point P with the pedal curve e ⊂ 𝜏𝑋 cannot 

be the center of one of these spheres since P is not located on 

the axis of the circle k, i.e., M does not belong to the vertical 

plane through P and the contact point X. 

 

Lemma 4. If the generators g₁, ..., g₄ ⊂ C are concyclic, 

then they intersect all tangent planes 𝜏𝑋 to C at four con-

cyclic points, provided that in the particular case gi ⊂ 

𝜏𝑋 the point of contact X with C serves as the point of in-

tersection gi ∩ 𝜏𝑋. 

Sketch of a proof: The top view reveals that generators of 

C intersects any two tangent planes of C at points which 

are corresponding under an affine transformation. Hence, 

the common points between the circle k and the ellipse e 

in the plane 𝜏𝑋 are sent to common points between two 

ellipses in any other tangent plane. It turns out that the 

pencil spanned by these two ellipses contains again a 
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circle. This is since all pedal curves on C share the linear 

eccentricity. For details of the proof, the reader is referred 

either to [6], p. 60 or to [7].4        □ 

Theorem 1. If four lines g₁, ..., g₄ are concyclic, then there 

exist infinitely many spheres which contact these lines. 

Remark 1. According to [6], Satz 4, there are only two 

cases where four mutually skew lines g₁, ..., g₄ have a con-

tinuum of contacting spheres: The given lines are either 

concyclic or they belong to a hyperboloid of revolution. In 

the first case, the six bisecting hyperbolic paraboloids of 

the pairs (gi, gj) with i, j ∈ {1, ..., 4}, i ≠ j, belong to a 

pencil. In the latter case, the paraboloids share the hyper-

boloid's axis. 

Proof. By virtue of Lemma 2, the first three given lines g₁, 

g₂, g₃ with the common orthogonal transversal d define a 

Plücker conoid C. The bisecting hyperbolic paraboloids of 

the pairs (g₁, g₂) and (g₁, g₃) share the vertical axis d and 

intersect each of the infinitely many horizontal planes 

along two concentric orthogonal hyperbolas with different 

asymptotes. These hyperbolas must meet at two real dia-

metrical points which are centers of spheres tangent to the 

three lines. The three pedal points w.r.t. such a center P 

span a plane which contains the pedal curve e of P on  C. 

On the other hand, the contacting sphere S with center P 

intersects the plane of e along the circumcircle k of the 

three pedal points. The circle k and the ellipse e share a 

fourth point, and by virtue of Lemma 4 this point belongs 

to the fourth given generator g₄ ⊂ C which contacts the 

sphere S, as well.           □ 

Suppose that two out of four concyclic lines intersect 

each other on d. Then also the remaining two lines must 

intersect, since in this case the center of the circumcircle k 

is located on the principal axis of the ellipse e = 𝜏𝑋 ∩ C. 

We call this an intersecting case in contrast to the skew 

cases. Another symmetric position of the concyclic lines 

arises when the circle k is centered on the secondary axis 

of e. This position is again independent of the choice of 

the plane 𝜏𝑋.  

 

 

 3. THE ENVELOPE OF SPHERES THAT 

 CONTACT FOUR CONCYCLIC LINES 

By virtue of Lemma 1, a canal surface whose spheres 

contact simultaneously four lines, passes through these 

four lines. Hence, the only non-trivial case is the envelope 

E of the spheres as mentioned in Theorem 1. 

Theorem 2. Given four concyclic lines on the Plücker co-

noid C, let E be the envelope of the contacting spheres. 

If the given lines are mutually skew, then the spine curve 

of E is a rational quartic q symmetric w.r.t. the double line 

d of C (Figure 7). The top view of q is an equilateral hy-

perbola with the top views of the torsal generators of C as 

asymptotes (Figure 8). The envelope E consists of two 

components which are symmetric w.r.t. d.  

 
4 As proved in [6], the four lines g₁, ..., g₄ are concyclic if and 

only if the (4 x 5)-matrix with rows (1, zi , zi
2, cos 2φi , sin 2φi)  

for i = 1, ..., 4 has a rank ≦ 3. 

In the intersecting case, the spine curve of E splits into two 

parabolas in the vertical planes through the torsal gener-

ators. The parabolas are congruent and share the axis d. 

Proof.  If φi denotes for i ∈ {1, ..., 4} the polar angle of  gi 

on the Plücker conoid C according to (1), then gi has the z-

coordinate zi := c sin 2φi . By (3) the distance of any space 

point  X = (x, y, z) to gi satisfies  

  [d(Xgi)]² = x² + y² + (z – zi)² – (x cos φi + y sin φi)². 

Hence, the bisecting paraboloid Pij of the generators gi, gj 

⊂ C obeys the equation [d(Xgi)]² – [d(Xgj)]² = 0 , i.e., 

   Pij :  (sin²φi – sin²φj)(x² – y²) – (zi – zj)  

+ (xy/c + 2z) + (zi² – zj²) = 0.    (6) 

 

 
 

Figure 7 Spine curve q of the enveloping canal surface of all 

spheres that contact the skew lines g₁, g₂ (with bisector P₁₂) 

and the line g₃. 

 

All paraboloids with zi ≠ zj intersect the vertical planes 

through the torsal generators t₁, t₂ along congruent parab-

olas with the parameter 2c. In the intersecting case with z₁ 
= z₂ and z₃ = z₄ the bisectors P₁₂ and P₃₄ split into the two 

vertical planes through t₁ and t₂. The other symmetric 

choice with φ₂ = -φ₁ and φ₄ = -φ₃ results in identical pa-

raboloids P₁₂ = P₃₄ satisfying the equation xy + 2cz = 0 in 

accordance with (5) and (4). 

The bisectors P₁₂ and P₁₃ share a spatial curve q of degree 

four, and each point P ∈ q is the center of a sphere S that 

contacts g₁, g₂ and g₃. As explained before, S must also 

contact the line g₄, which completes the concyclic quadru-

ple. We obtain the equation of the top view q' of q as a 

linear combination of the equations of P₁₂ and P₁₃ after 

the elimination of  z. 

(a) In the skew case, the quartic q is irreducible. Its equa-

tion has the form  

  q':  u (x² – y²) = v  with  u,v ∈ R \ {0},     (7) 
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where: 

 u := z₁ (sin² φ₂ – sin² φ₃) + z₂ (sin² φ₃ – sin² φ₁) 

          + z₃ (sin² φ₁ – sin² φ₂),  

     v := (z₂ – z₁)(z₃ – z₂)(z₁ – z₃).      

Consequently, q' is an equilateral hyperbola with the semi-

axis √|v/u|. The asymptotes x ± y = 0 are the top views of 

the torsal generators t₁, t₂ of C (Figure 8). In order to com-

pute the z-coordinate of the points of q, we use the equa-

tion of P₁₂ which is linear in z. Therefore, q is rational. 

(b) In the intersecting case, we can assume z₁ = z₂ ≠ z₃. 

Then P₁₂ splits into the vertical planes through t₁ and t₂. 

Each of them intersects P₁₃ along a parabola with the ver-

tical axis d.            □ 

Each point P of the spine curve is the center of a sphere S 

which has a real contact with the envelope E along the cir-

cumcircle k of the pedal points of g₁, ..., g₄ w.r.t. P. The 

circle k is located in a tangent plane 𝜏𝑋 of C. The generator 

g ⊂ 𝜏𝑋 is horizontal (note Figure 6). The contact point X 

belongs together with P to a vertical plane which is paral-

lel to the principal axis of the ellipse e ⊂ 𝜏𝑋. This plane 

passes also through the center M of k which is the pedal 

point of the plane 𝜏𝑋 w.r.t. P. Therefore, the axis [P,M] of 

the characteristic circle k, which is tangent to the spine 

curve q at P, has a top view that coincides with [P',X'].  

 

3.1 Generic case 

As mentioned above, each point of the spine curve q is 

the center of a sphere that contacts the given lines gi  for 

 i = 1, ..., 4 at real points. However, the top view reveals 

that conversely not each point T of gi needs to be a contact 

point with a real sphere of the one-parameter set. The line 

that connects T with the center P ∈ q of the contacting 

sphere must have a top view [T',P'] which meets the equi-

lateral hyperbola q' and is perpendicular to gi'. This holds 

for all points T'' ∈ gi' only if gi' has no real intersection 

with q' (like g₂' and g₃' in Figure 8). Otherwise, there re-

mains a segment on gi' symmetric w.r.t. d' which is not 

part of E (note g₁' and g₄' in Figure 8). The terminating 

points are uniplanar points of E, and the points T for which 

[T',P'] meets the equilateral hyperbola q' twice are bipla-

nar. We can summarize: 

Theorem 3. Given four mutually skew concyclic lines g₁, 

..., g₄ on the Plücker conoid C, let E be the envelope of the 

contacting spheres. 

The vertical planes through the torsal generators of C sep-

arate the space into two pairs of opposite sectors. Any 

given line gi ⊂ C belongs completely to the surface E and 

all points of gi are regular for each component of E if and 

only if gi lies in the sector which is disjoint to the spine 

curve q of E. 

Otherwise a segment of gi symmetric w.r.t. the double line 

d ⊂ C lies in the exterior of E, and two halflines along gi 

are curves of self-intersection of the components of E. 

The example displayed in Figure 11 reveals that there 

exist cases where all four concyclic lines g₁, ..., g₄ belong 

completely to both components. 

 

 
 

Figure 8 Top view of a sample of circles of one component of 

the canal surface E through the mutually skew concyclic lines 

g₁, ..., g₄ on a Plücker conoid with torsal gener-ators t₁, t₂ and 

double line d. The hyperbola q' is the top view of the spine 

curve and m' that of the curve of circle centers. 

 

We focus at first on the skew case and confine us to 

one connected component of the spine curve q = P₁₂ ∩ 
P₁₃, i.e., to one branch of the hyperbola q'. The complete 

canal surface contains a second component which is ob-

tained by a halfturn about the double line d. The shape of 

the envelope E is hard to grasp due to possible singularities 

like biplanar and uniplanar points on the given lines (The-

orem 3). Figure 9 shows a view of a singularity-free por-

tion of this envelope E. However, it can be shown that in 

the skew case the surface E always contains singularities 

in form of cuspidal edges.  

 

 
Figure 9 A portion of the canal surface E through the mutually 

skew concyclic lines g₁, ..., g₄ from Figure 8 along with the lo-

cus m of the characteristics' centers. 

 

Theorem 5. The center curve m of the circles k on the en-

veloping canal surface E is rational, too. 

Proof. Let P = (ξ, η, ζ) be any point in space. Firstly, we 

compute the corresponding pedal curve e on the Plücker 

conoid C: The pedal points of the central generators c₁, c₂ 

w.r.t. P are the secondary vertices  

C₁ = (ξ, 0, 0)  and  C₂ = (0, η, 0)  

of the ellipse e. This yields for the semiaxes a, b  of the 

ellipse e  

4b² = ξ² + η²  and  a² = b² + c². 
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The principal vertices of e are the pedal points of the torsal 

generators t₁, t₂ w.r.t. P. Thus, we obtain  

T₁ = ½ (ξ + η, ξ + η, c)  and  T₂ = ½ (ξ – η, η – ξ, -c).  

The plane ε of e is spanned by the four vertices. The center 

M of the circle k is the pedal point of ε w.r.t. P. This yields 

after some computation  

  M = 
1

4𝑎2𝑏2 (c²ξ³ + 2b²cηζ + 4b⁴ξ, c²η³ + 2b²cξζ + 4b⁴η,  

         2b²c (2cζ + ξ η)). 

If P runs along a rational curve like the quartic q, then m 

is rational, too (note the top view m' in Figure 8). This con-

firms the claim.            □ 
 

 

3.2 Symmetric cases 

We can distinguish between two symmetric cases 

where the centers M of the characteristic circles k are spec-

ified either on the principal axes (= slope lines) or on the 

secondary axes (= horizontal lines) of the respectively co-

planar pedal curves, the ellipses e ⊂ C. The cases of the 

first type are intersecting, the others are skew.  

 

 
 
Figure 10 Orthogonal view of one quarter of the canal surface 

E in the intersecting case. The lines g₁ and g₂ have coinciding 

images as well as g₃ and g₄. 

 

 (a) In the intersecting case, the spine curve splits into two 

congruent parabolas (Theorem 2). One parabola opens to 

the positive z-axis, the other to the negative. We confine 

us to the latter and to one half of the parabola q in the ver-

tical plane through the torsal line t₁. This plane is a plane 

of symmetry of the envelope E, and Figure 10 shows E af-

ter the orthogonal projection into this plane. We speak of 

a front view and indicate this by two primes. Note that the 

images of the given lines g₁ and g₂ coincide as well as that 

of g₃ and g₄. The planes of the characteristic circles pass 

through the second torsal line t₂.  

 (b) Due to the symmetry in the skew case, the centers M  

of the circles k are always located on the secondary axes 

of the pedal curves e. Consequently, the point M traverses 

a planar curve in the xy-plane. 

As shown in Figure 11, in this case the envelope has singu-

larities in form of lines of regression like in all other skew 

cases. Apparently, at the specified example all points of 

the four lines are regular points of the displayed 

component of E (note Theorem 3). In this particular exam-

ple, the two given lines g₂ and g₃ are rather close to the 

centerline c₁ of the Plücker conoid. Therefore, one com-

ponent of the traces of C in the xy-plane looks almost 

aligned. However, it would result in a contradiction if E 

contains five lines. 

 

 
 

Figure 11 Upper half (z > 0) of one component of the envelope 

E in the skew symmetric case. The lower half with g₃, g₄ is 

symmetric w.r.t. the y-axis. 
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