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Abstract: This paper proposes an analysis of the cyclic curves that can be considered as some of the most 
important regarding their applications in science, technique, design, architecture and art. These curves 
include the following: cycloid, epicycloid, hypocycloid, spherical cycloid and special cases thereof. In the 
first part of the paper the main curves of cycloids family are presented with their methods of generating 
and setting parametric equations. In the last part some of cycloid applications are highlighted in different 
areas of science, technology and art.  
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INTRODUCTION. BRIEF HISTORY 
 

From the historical point of view, a cycloid is the 
representative curve of the family, by the interest aroused 
among mathematicians from the 16th and 17th centuries. 
It has helped to increase interest in the study of 
geometric properties of plane curves. Because of this fact 
and quarrels  among mathematicians on the properties of 
cycloid, it was called „Helen of geometers“ (in reference 
to the Helen of Troy). 

Among mathematicians who have studied the cycloid 
we can mention: Nicolaus Cusanus (1401-1464); Marin 
Mersenne (1588-1648); Galileo Galilei (1564-1642) gave 
the current name of the curve in 1599; in 1634 Gilles 
Personne de Roberval (1602 – 1675) established that the 
area under a cycloid is three times the area of    its 
generating circle; Christopher Wren (1632-1723) 
showed, in 1658 that the length of an arc of a cycloid is 
four times greater than the diameter of its generating 
circle; Blaise Pascal (1623-1662); Christiaan Huygens 
(1629-1495); Gottfried Wilhelm Leibnitz (1646-1716); 
Johann Bernoulli (1667-1748) and so on. 

Some of these mathematicians went into posterity and 
because of their implication in the cycloid study. Thus, a 
marble statue of Augustin Pajou (1785), features Blaise 
Pascal studying the cycloid (work at the Louvre 
Museum, in 1960).  

In a mezzotinto engraving by Johann Jakob Haid 
(1742), Johann Bernoulli is presented with a manuscript 
where you notice a cycloid 4. 
  
2. CYCLOID 
 

The cycloid is a curve described by a point M of a 
circle when it rolls over without slipping on a straight 
line, also called base. 

In order to set parametric equations of cycloid you 
can choose a system reference with Ox axis which 
coincides with the fixed line (rolling line), with the 
rolling direction of the circle, and in its original position, 
the point M is the same as the origin O of a reference 
system (fig. 1). 

The curve parameter (C) is the angle t called rollover 
angle, formed by the radius r = MC and  radius CP, 
where M is a point on the cycloid, C is the center of the 

generator circle, and P is the  contact point of the circle 
to the base (fixed line). 

 
After calculatting the parametric equations of 

common cycloid are obtained:  
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A loop of cycloid (fig. 1) corresponds to t  0, 2 

and in the remaining definition interval the other loops 
are also repeted 3. 

The normal to the cycloid  in the M point passing 
through the contact point P of the rolling circle to the 
basic line, while the tangent MT passes through a point S, 
which is a symmetric point to P point  to the center of the 
circle that rolls over. 

The area under a cycloid is A = 3r2, and the length 
of a cycloid arc is L = 8r, where r is the radius of the 
generating circle. 

If point M does not belong to the circumference of the 
circle that rolls over, but it is a point inside the circle, 
then the curve is a shortened cycloid (fig. 2).  
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Fig. 1 Cycloid itself (common) 

Fig. 2 Shortened cycloid 
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If point M is outside the circle, the curve obtained is 
an elongated cycloid (fig. 3).  

Noting with M* the generating point in both cases and 
with d  the distance from this point to the center of the 
generating circle we set parametric equations: 
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In equation (2), for d = r the common cycloid is 

obtained, for d  r shortened cycloid and for d  r 
elongated cycloid. These curves are called trohoids. 

 
3. EPICYCLOID 
 

An epicycloid is the curve described by a point M of 
a circle that rolls over without slipping on the outer side 
of a fixed circle. 

For setting parametric equations, a fixed circle of 
radius R must have the center in the origin of reference 
system, and the axis Ox to go through initial position on 
the mobile circle that generates the epicycloid (fig. 4 ). 

The parametric equations of the epicycloid are: 
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Based on the location of the point M towards the 

centre of the generator circle we have: the common 
epicycloid (d = r), shortened epicycloid (d  r) and 
elongated epicycloid (d  r), where d is the distance from 
the point M to the center of the mobile circle. These 
curves are also called  epitrochoids. 

In relation to the fixed circle an epicycloid will have 
peaks, loops or minimals without double points. If the 
length 2R is a multiple of the perimeter 2r, then the 

curve will have R/r arcs. If k = R/r is an integer number 
the entire curve is closed and has k cusps, if k is a 
rational number the p/q curve has p cusps, and if k is 
irrational the curve is not closed but fills the space 
between the fixed circle and a circle of R  2r radius�, 
concentric to the large circle. 

If k = R/r is an integer, the length of an epicycloid arc 
is l = 8r(R  r)/R, and the area between an epicycloid arc 
and fixes circle is A = r2(3R  2r)/R, 1. 

For R = r or (k = 1), the corresponding epicycloid is 
cardioid (fig. 5, a) having parametric equations: 
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The entire length of a cardioid is L = 16r and the area 

covered by the curve is A = 6r2. 

For R = 2r or (k = 2), we get a nefroid (fig. 5, b) with 
parametric equations: 
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4. HYPOCYCLOID 
 

A hypocycloid is the curve described by a point M of 
a mobile circle rolling over without slipping inside a 
fixed point. 

In order to set the parametric equations of a 
hypocycloid we chose a reference system with the origin 
in the centre of the fixed circle and the current point M in 
the original position M0, on Ox axis (fig. 6). 

 

Fig. 3 Elongated cycloid 

Fig. 4 Epicycloid 

                        a                                    b 
Fig. 5 Cardioid (a), nephroid (b)  

Fig. 6  Hypocycloid 
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The parametric equations of the common hypocycloid 
are: 
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Based on the location of the point M to the centre of 

the generating circle we have: the common hipocycloid 
(d = r), shortened hipocycloid (d  r) and elongated 
hipocycloid (d  r), where d is the distance from the 
point M to the center of the mobile circle 1. These 
curves are also called hipotrochoids. 

Hypocycloids may have rounded peaks (minimum in 
relation to the fixed circle), loops or peaks.   

If k = R/r is an integer the curve is closed and has k 
cusps, if k is a rational number p/q, the curve has p cusps, 
and if k is irrational the curve never closes but fills the 
space of the great circle except for a circular disk of 
radius equal to R-2r, located in the center of the large 
circle. 

If k = R/r is an integer, then the hypocycloid has 
length L = 8(R-r) = 8R(k-1)/k, the area between the bow 
of the hypocycloid and the fixed circle is                  A = 
r2(3R-2r)/R, and the area contained inside of the 
hypocycloid is Ak = (k-1)(k-2)R2/k2,, 1. 

In the specific case of R/r = 3, an deltoid is obtained 
(fig. 7, a). 

In the specific case of R/r = 4, an astroid is obtained 
(fig. 7, b). 

The parametric equations of an astroid are: 
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If we remove the parameter t from the equations (7), 

the Cartesian equation of the astroid is: 
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An astroid length is L = 6 R, and the area contained 

within an astroid is 3R2/8. 
The astroid had a variety of names: tetracuspid or 

cubocycloid. 
In case of the ratio R/r = 2, the hypocycloid is 

reduced to a diameter of the fixed circle. 

5. SPHERICAL CYCLOID 
 

A spherical cycloid is a spatial curve described by a 
point M of a circle that rolls over without slipping on      
a fixed circle, the two circles are in plans that make       
an angle with each other constantly . Under these 
geometrical conditions the cycloid are plotted on a 
sphere (fig. 8, 5). 

If  = 0, we have a hypocycloid and  =  it is a 
epicycloid (plane curves). 

A spherical cycloid can also be described by a fixed 
point of a right circular cone as it rolls over without 
slipping on another fixed rotation cone having the same 
peak with the first. Under these conditions the cones 
having a common peak  contain the fixed circle and  
the mobile circle, respectively. 

The first cone can run on the convex face or concave 
face of the fixed cone. Subject to these conditions 
following cases are defined: the cone running on the 
convex face of the fixed cone and a sphere-like 
epicycloid is obtained (fig. 9, a); a cone running on the 
concave face and a spherical hypocycloid is obtained 
(fig. 9, b); a cone running on a circle with the peak in   
the center of the circle and a common spherical cycloid is 
obtained 2. 

 
6. CYCLIC CURVES IN SCIENCE AND 
TECHNIQUE 
 

From the scientific point of view, a cyclic curve can 
be tautochronous, brahistochronous or isochronous, 
properties with applications in physics. 

                     a                                       b 
Fig. 7  Deltoid (a), astroid (b) 

Fig. 8 Spherical cycloids 

                 a                                               b 
Fig. 9 Spherical epicycloid (a), spherical hypocycloid (b) 
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A cycloid (upside down) in a vertical plane is 
tautochronous if a material point on this reaches the 
lowest point at the same time in any position would start 
without initial velocity. The tautochronous problem was 
solved by Christiaan Huygens in 1659. 

A cycloid is also brahistochronous because it is a 
curve on which a material point can slide without friction 
and initial velocity in an uniform gravitational field, so 
that the displacement time  is the lowest in relation to all 
the curves that unite the two fixed points located at 
different heights. The brahistochronous problem was 
solved by Johann Bernoulli, in 1696. This result is 
considered as a starting point in variations calculation. 

The isochronous problem, in the sense of Huygens, 
lies in the fact that a material point in a moving periodic 
without friction, has a period independent of its original 
position. 

In 1673, Christiaan Huygens published in Paris, 
„Horologium Oscillatorium“ a very important treaty in 
the field, in five parts, showing also a cycloid as a 
tautochronous curve and isochronous, and drawings of a 
cycloidal pendulum. If the length of a such pendulum is 
equal to half the length of a cycloid, then the pendulum 
suspended from a cuspid of a reversed cycloid so that the 
thread remains between adjacent cycloid arcs, also 
describes a cycloidal trajectory due to the geometric 
property of this curve: a cycloid has also a cycloid as an 
evolute 4. 

The period of a cycloidal pendulum is given by the 
relationship: 

                                   ,/4π2 gaT                            (9) 
 
where a is the radius of the cycloid generating circle and 
g is the gravitational acceleration. 

In 1687, Isaac Newton (1643–1727) in his work 
„Philosophiae naturalis principia mathematica“ 
demonstrates the equality of a cycloidal pendulum period 
and that of the oscillations of a little viscous fluid in a   
U-tube manometer. Mathematically, this demonstration 
consists of the derivative of the motion equations in a   
U-tube manometer and setting the period of oscillation.  

In cosmology, the Russian physicist Alexander 
Friedmann (1888–1925) defined, in 1922, the concept 
called Finite Universe of Friedmann, where it is 
presented a model of non-stationary universe whose 
radius varies over time depending on its age as a periodic 
function that can be represented as a cycloid. 

These curves meet the fundamental law of gearing, 
which shows that for the transmission of rotary motion 
through two toothed gears under constant transmission 
ratio, tooth profiles must be constructed in such a way 
that a coomon normal in any point of contact of these 
profiles to pass a fixed point. For worm gears having 
cycloidal profile for outdoor gear, the head of the tooth is 
an epicycloid and the tooth foot is a hypocycloid and for 
the inner gear the two wheels profile is reversed.  

A cycloidal reducer (cycloidal speed reducer or 
cycloidal drive), built with cycloidal moving surfaces is 
able to achieve higher ratios in compact size. 

For a Wankel rotary engine, the profile of the stator 
room is a shortened epicycloid with R = 2r (a variant of 
epitrochoid). 

7. CYCLING CURVES IN DESIGN AND ART 
 

A cycloid is used by engineers and designers for 
designing roller coasters. Being a brahistochronous curve 
a cycloid allows to obtain highest speeds between the 
two different heights of the circuit.  

In architecture, a cycloid arc was used by Louis Kahn 
(1901–1974) at Kimbell Art Museum (1966–1972) in 
Fort Worth, Texas. An American architect named 
Wallace Kirkman Harrison (1895–1981) used cycloid 
arcs over the arcades of the main the facades at Hopkins 
Center for the Arts (1962), Dartmouth College. 

With these curves we can make geometric figures 
having aesthetic impact such as: stained glass windows, 
mosaics, paving, decorative motifs in tape with repetition 
or alternation, patterns on ceramic surfaces, stitched or 
printed patterns on various textile surfaces, curves that 
generate rotational surfaces, ornamentation, spatial 
models with aesthetic and didactic character. 

 
8. CONCLUSIONS 
 

Plane and space cycloidal curves apart from the fact 
that have contributed, through their study, to the 
evolution of geometric properties of various families of 
curves were, in many cases, the link between the theory 
of mathematics and various areas of physics and 
technology. These curves have many applications in 
modern technology, in areas which may include: 
different gears, mechanical transmissions, thermal 
engines  etc. They can be used, with the possibilities of 
innovation in designing various products. Cycloidal 
curves through properties and appearance, are widely 
used in various fields of art, because they are able to 
solve the aesthetic problems. 
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