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Abstract: Different variants of cardioids were reviewed and authors decided to an end to focus on the 

usability of a Double-heart curve. Starting from the geometric information related to its generation, the 

synthesis of an original generating mechanism was performed firstly, followed by the realization of its 

structural analysis. Mechanism’s positions were computed and the imposed curve was generated. The 

variations of certain trajectories were deduced from the corresponding diagrams. The mechanism sizes 

were modified and a wide class of curves presenting interest from the geometric point of view was 

obtained. Some mathematical properties of the curves generated by the above mechanism are studied 

(binormal vector, tangent equation in a current point, normal plane equation, tangent versor, versor of 

normal to the curve). 
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1. INTRODUCTION 

 

The cardioids were intensively studied. The authors 

of [1] were concerned with drawing cardioids as 

particular representations of epicycloids. Modalities to 

trace a cardioid as an epicycloids are presented in [2]. In 

the same paper the cardioid’s rafter, which is similar to 

the cardioid, additionally including a loop around the 

returning point. Several types of cardioids, along with 

their equations, are provided in [3], concluding that 

several variants are available. The cardioid generation as 

a cyclic curve is presented in [4]. 

A domain for the utilization of cardioids is presented 

through examples in [5], considering aesthetic models 

with metallic fences and metal screens for windows. 

The Double-heart curve, studied in 1647 by Grégoire 

de Saint Vincent and in 1750 by Cramerin respectively is 

approached in [6]. The equation of the curve (which is 

quartic), is provided by using Cartesian coordinates, 

mentioning that it is a polyzomal curve. It was studied by 

Cayley in 1868. The geometrical generation of the 

double-heart curve is presented in [6]. The animation of a 

line moving such as to preserve its parallelism to the 

abscise is employed. The line’s ends are moving along 

two tangent circles, one being placed inside the other one 

and the line’s middle point traces the above mentioned 

curve (fig. 1). 

  

 
 

Fig. 1 The line’s middle point traces the Double-heart curve. 

[6] 

 

This information was used to realize the synthesis of 

the generating mechanism.  

2. SINTHESIS OF MECHANISM 

 

One considered the inner circle as having the center 

denoted by the point A and a diameter equal to the radius 

of the outer circle, whose center is in the point H (fig. 2). 

The point B rotates along the inner circle, whilst the rod 

BC whose length is variable, has to preserve its 

parallelism to the abscise.  

Therefore coulisses were placed in the point C. They 

are perpendicular one over the other and welded. The 

coulisse from F preserves the parallelism of the coulisses 

from C with the axis x and y. The element 4 is linked 

through a rotation couple to the element 3. The points A 

and H have the same ordinate.  

 

 
 

Fig. 2 The synthesised mechanism. 

 

The difficult problem consists in determining the 

point D within the mechanism, as long as it is placed in 

the middle of the rod BC which has a variable length. 

Fig. 3 depicts the adopted technique – drawing the 

perpendicular line on the middle of the BC segment, 

according to the method from the geometric drawing. 

The perpendicular line is crossing through the points E 

 Iulian POPESCU, Ludmila SASS, Alina DUTA, Marcela POPESCU, Alina Elena ROMANESCU  
 

DOUBLE-HEART CURVE  

GENERATED BY AN ORIGINAL MECHANISM 



Double-heart curve generated by an original mechanism 

MAY 2019  VOLUME 14 ISSUE 1 JIDEG 86 

and D. Point D is placed in the middle of the BC 

segment. 

 
 

Fig. 3 Determining the middle of the BC rod. 
 

The kinematic chain relying on fig. 3 is depicted in 

fig. 4. The coulisse D slides along BC. The elements BE 

and CE have equal lengths. The coulisse from E allows 

for the sliding of the element 6 when the length of BC is 

changing. 

  

3. MECHANISM STRUCTURE 

 

The mechanism has 9 mobile elements and 13 

couples of 5-the class, as follows: A(0,1); B(1,2); B(1,9); 

D(2,8); H(3,0); C(2,4); C(4,5); C(4,6); C(3,4); F(5,0); 

E(6,7); E(8,7); E(9,7). The degree of mobility is: M=3n-

2C5-C4 =3.9-2.13=1. 

Fig. 4 depicts the structural schematic of the 

mechanism and its decomposition in kinematic groups. A 

leading element and two triads are obtained (fig. 5). 

 
 

 

 

 

 

 

 

 

 

Fig. 4 The structural schematic of the mechanism. 

 

 
 

Fig. 5 A leading element and two triads. 

 

4. RELATIONS AND GRAPHICAL RESULTS 
¶ (10pt) 

Based on fig. 2 we obtained: 
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Eq. (1) yields the coordinates of B, and the equation 

(2) are used to get  and BC.  

The coordinates of D (the point tracing the curve) are 

obtained from (3). The triangle BEC is isoscel (as 

revealed by fig. 3). It means that BE=EC, and the angles 

EBC and ECB are equal. 

The following initial data were considered, 

considering millimeters as units of measure: 

 Fig. 6 depicts the plotted mechanism in a certain 

position. 

 

 
 

Fig. 6. The plotted mechanism in a certain position 

considering the sign (+). 

 

sin α is yielded by equations (2), and for next, cos α, 

one needs to extract a square root with two possible 

signes (  ). Two solutions are therefore possible.  

From the constructive point of view, the mechanism 

is initially positioned with CF in the right side of A 

(corresponding to the sign (+)), according to fig. 6. Fig. 7 

depicts the solution corresponding to the sign (-).  

  

 
 

Fig. 7 The mechanism in a position for the sign (-). 

 

The successive positions for the mechanism are 

depicted in fig. 8 (for the sign (+)) and in fig. 9 for the 

sign (-). 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 Successive positions for the mechanism 

 considering the sign (+). 



Double-heart curve generated by an original mechanism  

MAY 2019  VOLUME 14 ISSUE 1 JIDEG 87 

 
 

Fig. 9 Successive positions for the mechanism 

 considering the sign (-). 

 

Fig. 10 depicts the side BC with variable length for 

the solution with (+) whilst fig. 11 corresponds to the 

sign (–). 

 

 
 

Fig. 10 Variation of the side BC considering the sign (+). 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11 Variation of the side BC considering the sign (-). 

 

Fig. 12 presents the curve’s side considering the sign 

(+) whilst fig. 13 is dedicated to the counterpart situation. 

The final curve is depicted in fig. 14, being similar to that 

from fig. 1. 

 

 
 

Fig. 12 Curve’s side considering the sign (+). 

 

 
 

Fig. 13 Curve’s side considering the sign (-). 

 

 
 

Fig. 14 Double-heart curve generated by the mechanism. 

 

5. MATHEMATICAL PROPERTIES OF THE 

GENERATED CURVES [7] 

 

Considering the actual selection for the reper placed 

on the xOy plane, one selected a parameter (denoted by t 

in fig. 15) consisting in the angle  formed by the 

vectorial radius AB with the parallel to Ox crossing 

through A. With this notation: 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 15 Analytical determination of the coordinates 

 of point D in the xOy reper. 

 

 The point B has the coordinates: 
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 The equation associated to the line BC, parallel to the 

axis Ox:  
 

 trry sin.  (5)  

 

 The big circle, with the radius R=2r and the center 

H(0,2r) has the equation: 

 

  

 

 We consider that:  
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then the coordinates of the point C can be deduced from 

the system of equations: 
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By substituting y in the 1-st equation, we get:  

 

   ttxC sin3sin1   (9) 

 

For:  
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the parametrical equations of the curve, corresponding to 

the first loop, which is placed in the quarter, can be 

written as: 
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One can notice that it corresponds to the first 

positioning of the mechanism (with CF placed at the 

right of A, fig. 6). 

For:  

   ttrxC sin3sin1   (13) 

 

following the same steps, the parametric equations of the 

curve, corresponding to the 2-nd loop, placed in the 2-nd 

quadrant, are: 
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One should remark that it corresponds to the second 

positioning of the mechanism (with CF placed at the 

right of A, fig. 7). 

 

5.1. Remark 1  
By selecting another coordinate reference, with the 

origin in point A and following identical steps, one gets 

the parametric equations in which the expression of  is 

the same, by the expression of  is simpler.  

It means that: 
 

 tryD sin.  (15) 

 

5.2 Remark 2  

As 1sin1:)(  tRt , so 2sin10  t , it 

means that   rtr 2sin10  , meaning ryD 20  ; in 

other words, the maximum value of  is 2r. For the first 

loop, this value is reached when  and in this case 

, which is the maximum of the first loop. 
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In a similar manner, the loop of the second loop is: 

 

  rrV 2,2   (17) 

 

Obviously, for  and , one gest 

the point O(0,0) which can be found on both loops (being 

the only common point).  

 

5.3 Remark 3  
Let us consider the graphical representation of the 

curve as being a function . When the first 

loop is considered, 

- For 
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Similar remarks can be made relative to the second 

loop. 

 

5.4 Remark 4 

Considering the selection made for the system of the 

coordinates, the equation (14) reveals the symmetry of 

curve with respect to the axis Oy. In any other system of 

coordinates, the curve is symmetric relative to the 

mediator of the segment , where  and  are the 

loops peaks. 

The use of Frenét’s trihedral provides more 

information than any other fix or mobile Cartesian reper.  

As long as we deal with a plane curve, the osculator 

plane is actually the plane of the curve .  

The deviation of the curve from the osculator plane is 

the torsion which is null (as it always is for a plane 

curve). 

 

5.5 Binormal vector  
The binormal vector is perpendicular to the osculator 

plane in the current point of the curve. It means that is 

perpendicular to  in the current point of the curve. 

It actually represents the line for which  is 

playing the role of leading vector and which is crossing 

through the point , with  

representing the coordinates of the point D from the 

curve:  
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The set of all binormal vectors generates a cylindrical 

surface for which the given curve plays the role of 

leading curve.  

 

5.6 Tangent equation in a current point 

Because: 
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the tangent equation in a certain point  (where 
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In parametric expression: 
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5.7 Normal plane equation  

The normal plane is determined by the current point 

and has as leading vector the leading vector of the 

tangent to the current point in the curve. It is described 

by equation: 
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5.8. Tangent versor 

Denoting by: 
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Then: 
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It comes out that the versor of the tangent 

 has the components, for 
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5.9 Versor of normal to the curve  

The versor of normal to the curve in the current point 

is  21, nnn , where )(21 tn  and )(12 tn  which means 

that:  )(),( 12 ttn    

 

5.10 Equation of the normal to the curve in the 

current point 
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The parametric representation is: 
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5.11 Equation of the rectifying plane  
The rectifying plane is determined by the current 

point and its normal vector is the leading vector of the 

normal to the curve in the current point. Its equation is: 
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5.12 (Plane) curve curvature 

The (plane) curve curvature is: 

 

 

   
3

2

0

2

0

000

0

)()(

)(.)().(
)(






 




tytx

tyxtytx
tK

 (29) 

 

where, for 









2

3
,

2


t : 

 

 

 


























trty

tE

ttt

tE

tEttt
t

r
tx

sin)(

)
)(

cossincos

)(

)(sincossin
(cos

2
)(

3

2

3

222

 (30) 

 



Double-heart curve generated by an original mechanism 

MAY 2019  VOLUME 14 ISSUE 1 JIDEG 90 

5.13 Remark 5 

If the small circle, whose radius is r, is not tangent 

from inside to the big circle (whose radius is 2r) in the 

origin O, but it is tangent from inside in the point of 

coordinates (0,4r) (diametrically opposed), than one gets 

a curve symmetric relative to the line described by the 

equation y=2r. This last one is crossing through H and is 

parallel to Ox, as in fig. 16. 

 

 

 

 

 

 

 

 
 

Fig. 16 The curve when the small circle is tangent from inside 

in the point of coordinates (0,4r). 

 

5.14 Remark 6 

The curve is the symmetric relative to Oy. Therefore, 

through rotation by an angle between 0 and  it can 

generate a compact, bounded and closed surface. The 

surface is smooth (except for the point O) and connected 

through arcs. The body of rotation bounded by this 

surface is also compact and connected through arcs, but 

it is not convex. 

 

5.15 Remark 7 

If the small circle with radius r is tangent from inside 

in a point to a bigger circle with radius  

then all the above can be adapted by 

analogy. One can realize an interesting qualitative, 

quantitative and comparative study relative to the 

obtained curves, for  

 

 

6. CONCLUSIONS 

 

The paper provides a contribution to the analysis and 

synthesis stages of the mechanisms used to generate 

plane curves. 

The starting point consists in mechanisms used to plot 

cardioids, considering details on the shape of the Double-

heart curve. 

The animation of the geometrical genertion of this 

curve was used to achieve the synthesis of the generating 

mechanism consisting in 9 mobile elements and 13 

couples of class V. 

A complicated analysis was performed: the obtaining 

of a kinematic chain in which the middle of an element 

with variable length represent the generating element of 

the studied curve.  

The mechanism’s structure was studied and afterward 

the relations based on the contour’s method were written. 

Their successive positions were determined, which 

finally yielded the imposed curve.  

Original particular curves of various shapes (some of 

the similar to the imposed curve) were obtained by 

modifying the lenghts of certain sides of the mechanism. 

The mathematic study of the Double-Heart curve was 

also performed. 
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