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Abstract: The concave polyhedral surface of CC II can be used as a structural template for architectural 

design of domes, roofs or other covering or stand-alone structures. Subdivision of CC II faces in 

geometrically defined way can be observed as a part of the design process, if done with the intention to 

contribute to the aesthetic quality of the building itself. In this paper we discuss certain interventions on the 

tiled triangular faces of the CC II by regular triangles and hexagons, in order to get patterns applicable in 

architecture. By using different colors and / or materials of the tiles, we can get solutions that add the 

decorative layer to the structural one. Examining various solutions, this research focused on the D3 

subdivision of the lateral polyhedral triangle (LPT) and in the resulting uniform tilings, searching for the 

ways to overcome monotony of highly symmetrical patterns. As opposed to exploring the ways of 

assembling the tiled LPTs with assigned layouts of tiles into shape of the CC II in order to get desired 

patterns on its surface, this paper explores the creation of various patterns within the existing, formerly 

obtained uniform tilings (2-uniform, trihexagonal tiling). A couple of conceptual solutions are given, as an 

illustration of the idea. 
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1. INTRODUCTION    

 

The geometric problem of tiling a planar surface is 

closely related to architectural applications, because it 

has been brought out of the practical problem: how to 

pave flat surfaces such as floors, roofs, walls, and the 

like. The earliest records of tilings can be found in 

Ancient Mesopotamia [26], but we can encounter this 

subject throughout the history of architecture.  

Out of 2D space, the problem can be transferred to 

3D, so we can search for solutions which imply tiling 

polyhedral surfaces. These surfaces can also be tiled if 

their subdivided (tiled) planar net corresponds to 

Euclidean tiling. Since the number of such solutions 

can be infinite, depending on the chosen tiles’ 

arrangement method, as well as on the number of 

subdivisions of the polyhedral faces themselves, 

geometricians, architects and other scientist who have 

been engaged in this problem have mostly confined 

themselves to k-uniform tilings. Magnus Wenninger 

[28], Buckminster Fuller [10], Keith Critchlow [8], 

Branko Grünbaum [14]... are some of the most 

important names that dealt with this subject in their 

work. Due to an unlimited number of k-uniform tilings 

alone [11], not to mention the variations within the 

already observed ones, there is a plenty of room for 

research, and especially for applications in this field.   

In this paper we will focus on the deltahedral 

surfaces of the concave cupolae of the second sort (CC 

II) [24], [20], [21], [22], [23] and the possibilities for 

such structures to be used in architecture. The 

aforementioned solids (CC II hereinafter) are polyhedra 

whose properties and metric relations have been 

elaborated in previous studies [24], [20]. There are 14 

representatives of CC II: 7 of CC II-M (upper row on 

Fig. 1) and 7 of CC II-m (lower row on Fig. 1), over 

the same (4≤n≤10) bases.   

Such spatial structures can be used as a template for 

architectural elements such as domes (as the origin of 

the word “cupola” suggests), but also for stand-alone 

objects. Their fragments can also be used as parts of 

objects, roof surfaces, wall surfaces, etc., especially 

suitable whenever regular polygonal bases (4≤n≤10; 

8≤2n≤20) are concerned [25], including bases such as 

heptagon or nonagon.  

 

  
Fig. 1 Fourteen representatives of CC II. [20], [25] 

 

The need to subdivide the triangular lateral faces of 

these polyhedra (or lateral polyhedral triangle, LPT 

hereinafter) can be pointed out in several situations:  

when the LPT of larger dimensions should be split 

because of the transport or static characteristics of the 

applied material, as well as in situations where certain 

visual or design effects are desired. This study is based 

primarily on the latter, giving some ideas that can be 

applied not only on the actual case of CC II, but also on 

any other deltahedral surface. 

 

2. APPLICATION OF CC II IN ARCHITECTURE 

 

In several previous studies [24], [22], [23], [21] and 

[18], CC II have been examined in terms of suitability 

for application in architecture. Their feasibility has 

been shown, static stability proven, and in [24], [21], 

[23] and [25] some ideas for architectural design has 

been given.      

Due to the equilateral triangles in its composition, their 

congruence and their simple shape suitable for serial 

production, the form of the CC II can be easily 

assembled on the site. Also, since any CC II can be 

completed by folding the one-piece planar net, it 

provides additional possibilities for application in 

different building systems. Thus, their construction can
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be quite different1, but we will focus on the 

conceptual design provided by tiling the LPT of CC II. 

In structural terms, the shape of CC II is 

advantageous because the positions of the vertices are 

geometrically conditioned [24]. Therefore, it is stable 

and suitable for larger spans, with no need for 

additional support elements. However, if we perform 

such a structure in larger dimensions, the triangular 

faces themselves might be extensive and difficult for 

handling, so we need to subdivide them. 

For example, to cover a decagonal base of span 

R=20m, we choose the shape of CC II-5. The edge of 

the polyhedron will be ≈ 6.50m, so the surface of LPT 

equals 18.29m2. These dimensions might be too large 

to cover in some materials (e.g. glass) as a whole, so 

triangular faces will have to be dissected. If we adopt 

the edge subdivision into 3≤b≤9 sections, as in [25], 
the edge length of thus obtained tiles ranges from 

a3=2.17m, to a9=0,72m, which is convenient for 

prefabrication and on-site handling. As the spans vary, 

the dimensions of the tiles will proportionally change.  
The subdivision of the triangular faces can also be 

made solely for the purpose of the design’s visual 

impact, on which the accent will be put in this paper. 

 
3. THE PHASES OF THE RESEARCH  

 

Subdivision of triangular faces of CC II can be 

done in different ways, from an arbitrary division, to a 

division into regular polygons. The latter one 

corresponds to the problem of the Euclidean tilings. 

This problem has been thoroughly researched by 

several authors, starting form Kepler [16], so we only 

mention the most significant: Coxeter [7], Grünbaum 

[14], Critchlow [8], Wenninger [28], Ghyka [12], 

Conway [5], [6],  Chavey [2], [3]. 

Being related to the tiling problem, we can adopt 

the matching triangular segment of a k-uniform 

Euclidean tiling, as a solution of the problem at hand, 

as shown in [25]. Thereby we chose a tiling that 

includes only equilateral triangles and regular 

hexagons as tiles, because no other shapes can arise 

within the uniform subdivision of the initial equilateral 

triangle (LPT) [15].     

However, segments of the k-uniform tilings will not 

be the best way of solving such a problem, because it 

would require a lot of painstaking research in 

comparing, fitting, deciding, accepting or rejecting the 

tiling segments as solutions, as many of them would 

not be valid (would not fit into the triangular frame 

without residues or overlaps). We can say that this 

“gestalt” method is based more on intuition and visual 

perception, than on an exact, targeted solution. So, if 

we would like to chose from a number of valid 

solutions, then we will take the reverse steps: we will 

divide the triangle (LPT) into triangles and hexagons, 

put them back in the net of the cupola (Fig. 2) and then 

                                                           

1  from a low budget, provisional construction that can be 

performed by a one-man constructor, via classical roofing system, to 
highly developed technology (including precast flat panel system, 

diagrid system, shell plates etc.…) where the contracting teams are 

involved.   

choose, between many solutions, the most suitable one 

for technical or aesthetic reasons.  

 

 
 

Fig. 2 a, b) Tiled LPT set in the segment of the CC II’s net, c) 

patterns obtained  by recoloring certain tiles in the uniform 

tiling (trihexagonal tiling) in the CC II net. 

 

At this stage of the research, we are no longer 

satisfied with uniform tilings obtained by mere 

alignment of subdivided LPT in the net of CC II and 

consequent patterns that is created on its surface. 

Hence, within the previously obtained  tiling, we 

modify the solution by changing color, material, relief 

of certain tiles, or by their omission. In this way, in the 

faster and more precise way we get the desired pattern, 

without deliberation about what sort of LPT 

subdivision, or what kind of LPT orientation within the 

CC II’s net we need to get the desired solution (Fig. 2 

c). 

 

4. TRIANGLE FREQUENCY AND THE 

ARRANGEMENT OF TILES  

 

In order to divide the LPT into another (smaller) 

triangles and regular hexagons, we will use an auxiliary 

triangular grid (Fig. 3 b) within the triangle [13], which 

we obtain by dividing the edges of the triangle into b 

[4], [25] sections (Fig. 3 b), and then connect these new 

vertices by the parallel lines. This is a procedure that 

corresponds to determining the frequency of the 

principal polyhedral triangle (PPT) in geodesic 

polyhedra [13], [4], [10]. The frequency is denoted by 

b, as in this case it is equal to the number of edge 

segments. We will use this division in order to fit 

hexagons within such a triangular grid (Fig. 3 c) and 

then look for possible solutions.  

 

 
 

Fig. 3 a)Triangular grid b) Uniform subdivision of LPT and 

the frequency of equilateral triangle, c) Placing regular 

hexagons within triangular grid of subdivided LPT of 

frequency 6. [25] 

 

For example, to illustrate the procedure, this study 

holds down to the division - frequency of 3<b<9 [25]. 

The higher the frequency of the triangle, the number of 

hexagons within the triangle will be greater. The higher 
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the number of hexagons we can place within the 

triangle, the number of their different layouts will be 

greater, as we can see in Fig. 4, for 6-frequency LPT.   

 

 
 

Fig. 4 The example of 6-frequency triangle (LPT) with 

distinct arrangements of hexagonal tiles and highlighted cases 

with D3 symmetry. 
 

Determination of the number of all the possible 

tiles’ dispositions for the observed b-frequency, 

requires engaging in more detailed combinatorial 

calculations, which this study will not deal with.   

It should be mentioned that among these solutions 

we can find the ones where hexagonal tiles:  

 are  separated, without contact 

 touch by the edges 

 touch by the vertices 

 touch both by the edges and vertices 

 some hexagonal tiles touch, and others are 

separated, 

as well as those where hexagonal tiles are arranged 

with different levels of symmetry: asymmetric, plane 

symmetric, rotationally symmetric, centrally symmetric 

and D3 symmetric - where all the mentioned 

symmetries are involved. This is important because of 

the continuity of the joined tiles, helping patterns to be 

defined more clearly. 

In the previous research [25], as well as in this 

paper, we considered only the variant with D3 

symmetry, since it is the only one that provides a 

predictable and uniquely determined solution.  The 

detailed procedure of obtaining such arrangements for 

frequencies 3<b<9, together with the tabular review of 

all the possible solutions are given. The research has 

shown that there are 30 ways to tile the triangle of 

3<b<9 frequency by applying the maximum level of 

symmetry for the triangle, D3 symmetry. The point is 

that, in this way, a wallpaper group p6m [9], [27] is 

formed, which coincides with the arrangement of the 

triangular faces LPT within the CC II’s net. Thus, by 

placing the subdivided LPT back to the cupola’s net, 

the section of a k-uniform tiling [14], [11], [25] is 

obtained. Folding the net into the 3D structure, CC II, 

provides a spatial tiling of the polyhedron’s lateral 

surface. In this manner, we get a solution in which with 

the use of only two regular polygons, triangle and 

hexagon, different patterns and spatial solutions can be 

obtained.  Serial production and prefabrication of just 

two shapes, makes such tiled structure easy and 

convenient for assembly.  

What makes this study innovative compared to the 

previous research, is an attempt to find new, diverse 

solutions within the already existing tiling which 

consists of D3 subdivided triangles, so that such 

solutions could suit even more successful architectural 

design. By color intervention, by using different 

materials, or by the omission of certain tiles from the 

existing layout, we can "paint" on the surface of these 

cupolae, and thus create patterns at our own will, 

without relying solely on the final result when 

assembling identically subdivided triangles.  

 

5. RESULTS 

 

Multilateral symmetry, even with just two planes of 

symmetry is often avoided in contemporary 

architectural solutions. The reasons are twofold: one 

concerns the possible confusion in the orientation for 

some users of such buildings, and the other concerns 

monotony in the visual experience. Since all the CC II 

are multilaterally symmetrical, and the subdivisional 

solutions for the p6m wallpaper group also have the 

highest level of symmetry, we propose in this paper 

that, within the same layout of the tiles, this symmetry 

can be changed or even distorted in order to get more 

interesting solutions.  

Let us start from the existing patterns obtained by 

the method elaborated in paper [25].  Given that there 

are 14 representatives of CC II and 30 ways of tiling 

the LPT with the given frequencies 3<b<9, we have a 

total of 420 different solutions. They can be further 

modified by using different materials, colors, or by 

deliberate omission of some tiles, as aforementioned.  

In the study [25], several examples are given as 

illustrations of the final appearance of the tiled CC II. 

The layout of the hexagonal tiles in these solutions is 

uniform and covers the entire surface of the cupola. 

Some of the solutions are suggested as architectural 

design of cupolas, domes, roofs, halls, or alike.    

So, let us consider an example: augmented CC II-

5M, subdivided by b-frequency LPT with D3 symmetry 

(as in Fig 4, framed cases). The example of such a 

tiling is given in Fig. 5.  

 

 
 

Fig. 5 An example of the augmented CC II-5 with 6-

frequency triangular faces [25], with tri-hexagonal tiling.  

 

This study aims to show that the monotony of self-

repeating D3 patterns on LPT can be broken by:  

omitting a complete set of triangular tiles,
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1) choosing the CC II which concave shape 

considerably vary, depending on the view point,  

2) changing the color of different tiles. 

1) Let us start from the case where D3 symmetry is 

not disturbed, but the outline of the cupola gets new 

appearance and cupola itself takes on a porous 

structure. 

When we remove the triangles from the observed 

tiling, we get new shapes in 3D assemblage (Fig. 6), 

provided that we choose physically sustainable 

solutions, i. e. those where hexagonal tiles touch by the 

edges. Thus, the hexagonal tiles (slabs, panels) are 

creating a continual, monolithic structure that can exist 

as a standalone composition, which may then serve as 

an exostructure [1], increasingly present in 

contemporary architecture [19]. They can also find 

application in façade design, shades design, solar 

design [17], or alike. 

The light-shadow ratio in these cases adds a new 

layer to the perception of the shape and opens up a new 

room for testing optimal solutions in this direction. 

  

 
 

  Fig. 6 Structures obtained by omitting the triangular tiles in 

the tiled deltahedral surface of augmented CC II-5M. 
 

2) If we turn to the reasons for tiling CC II rather 

than some other deltahedral surfaces, we can see that, 

thanks to the concave shape of CC II, the appearance of 

the tiled cupola itself may vary significantly, 

depending on the viewing angle, i.e. the points from 

which we are observing it. The shapes of CC IIs with 

lesser number of sides in the basic polygon (CC II-4, 

CC II-5), make these differences more obvious. The 

alterations in what has been seen during the movement 

make monotony in observation of the tiled surface to 

be avoided. Also, with the same number of LPT 

triangles, and of consequently required tiles, we can 

make two different types of cupola: CC II-m and CC 

IIM (Fig. 7). 

  

   
 

Fig. 7 CC II-4m tiled by 9-frequency LPT, seen from the 

different viewpoints, and CC II-4M with the same LPT. 

 

3) From the former examples that use the entire set 

of identical tiles in the LPT subdivision, which are 

certainly most suitable for assembly, because just two 

types of tiles are employed: triangular and hexagonal, 

let us move to modified solutions. We modified them 

by changing color (material) or number of tiles, but not 

their general disposition. We took 2-uniform, 

trihexagonal tiling, or hexadeltille [5], [6], i.e. its 3D 

assemblage in augmented CC II-5M (Fig. 5 [25]), and 

changed its pattern by color. 

We give just a few examples of how the uniformly 

subdivided cupolae can be transformed and redesigned.  

In the first example, given in Fig. 8 a, we used 

hexagonal tiles in two colors. The ones of the same 

color are attached by the edges so that they form strips. 

By alternating these tiles, the stripes can be 

longitudinal or transverse. 

 

a  

b  

c  

 

Fig. 8 Augmented CC II-5M, tiled by 6-frequency LPT and 

modified by color intervention. 
 

The vertices of CC II can be highlighted in color, so 

that we can get a play of shades by color gradation, or 

forming floral patterns around the vertices (Fig. 8 b).  

With a deliberate arrangement of differently 

colored tiles, we can form various figures, ornaments 

and decorations on the surface of CC II, symmetrical or 

asymmetric (Fig. 8 c).  

 

  
 

Fig. 9 Augmented CC II-5M, tiled by 6-frequency LPT, 

modified by using 4 shades of the same color of hexagonal 

tiles. 

 

The color gradation can be performed throughout the 

surface of the cupola, or partly, in transverse or 

longitudinal direction, as shown in Fig. 9. 
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In Fig.10, we give a few more ideas to indicate how 

different patterns can be formed, using color 

interventions together with the omission of hexagonal 

tiles. Asymmetric solutions can be particularly 

interesting, because they offer nearly infinite 

possibilities for exploring visually satisfactory results.  

 

     

     
 

Fig. 10 Augmented CC II-5M, tiled by 6-frequency LPT 
modified by symmetric and asymmetric omitting of the 

hexagonal tiles. 
 

Finally, in search of the solutions suitable for 

application in architecture, we can use just segments of 

the tiled surface of CC II, which will participate in the 

visual segment of the facade design, e.g. as decorative 

panels, brise-soleil, etc. (Fig. 11).  

 

   
 

Fig. 11 Fragments of CC II tiling used as a façade design. 
 

6. FURTHER RESEARCH 

 

This research can be further developed in several 

directions: 

 toward dealing with higher frequencies 

subdivisions; 
 toward generating random permutations of tiles, 

including random orientations of the triangles in the 

lateral surface, rendering generative design of 

patterns; 
 toward considering other symmetric, but not D3 

symmetric solutions with symmetry levels lower 

than D3 (Fig. 12 a)     
 toward substituting some of the triangular tiles by 

the same tiling as in the initial LPT, thus 

transferring the problem into the realm of fractals 

(Fig. 12 b); 
Also, even greater freedom in combining color 

of the tiles can be explored within the subdivision 

of the higher frequency LPT, which represents a 

fragment of regular, hexagonal tiling (Fig. 12 c). 
  

a     b   

c  
   

Fig. 12 a) An example of tiled surface of CC II-6M with  
reflexive symmetry b) Fractal subdivision of LPT on CC II-

5M, c) LPT subdivided as a section of uniform, hexagonal 

tiling. 
 

7. CONCLUSION 

 

As an extension of the research begun with 

consideration of the most symmetric layout of tiles that 

can be applied to the triangular faces (LPT) of the CC 

II, which resulted in the segments of k-uniform tilings, 

this paper gives a broader view to the possibilities for 

their application in architecture. In order to get more 

diverse solutions which can break the monotony of 

uniform tiling, several interventions were considered. 

Omitting the triangular tiles from the surface, 

hexagonal ones can form an autonomous structure. 

With the alternation of different colors and materials, 

or with the omission of certain tiles, we can alter the 

symmetry of the tiling solution and redesign the 

appearance of the cupolae. The subject itself gives 

room for many new directions of research, from 

considering higher LPT frequencies, fractal tiling, or 

lower symmetry subdivisions of LPT, through 

generative design, to artistic "painting" of the lateral 

surface of the observed tiled cupola. 
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