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Abstract: Strophoids are circular cubic curves which have a node with orthogonal tangents. These rational 
curves are characterized by a series or properties, and they show up as locus of points at various geometric 
problems in the Euclidean plane: Strophoids are pedal curves of parabolas if the corresponding pole lies 
on the parabola’s directrix, and they are inverse to equilateral hyperbolas. Strophoids are focal curves of 
particular pencils of conics. Moreover, the locus of points where tangents through a given point contact the 
conics of a confocal family is a strophoid. In descriptive geometry, strophoids appear as perspective views 
of particular curves of intersection, e.g., of Viviani’s curve. Bricard’s flexible octahedra of type 3 admit 
two flat poses; and here, after fixing two opposite vertices, strophoids are the locus for the four remaining 
vertices. In plane kinematics they are the circle-point curves, i.e., the locus of points whose trajectories 
have instantaneously a stationary curvature. Moreover, they are projections of the spherical and 
hyperbolic analogues. For any given triangle ABC, the equicevian cubics are strophoids, i.e., the locus of 
points for which two of the three cevians have the same lengths.  
On each strophoid there is a symmetric relation of points, so-called ‘associated’ points, with a series of 
properties: The lines connecting associated points P and P’ are tangent of the negative pedal curve. 
Tangents at associated points intersect at a point which again lies on the cubic.  For all pairs (P, P’) of 
associated points, the midpoints lie on a line through the node N. For any two pairs (P, P’)  and (Q, Q’) of 
associated points, the points of intersection between the lines PQ and P’Q’ as well as between PQ’ and 
P’Q are again placed on the strophoid and mutually associated. The lines PQ  and PQ’ are symmetric with 
respect to the line connecting P with the node. Thus, strophoids generalize Apollonian circles: For given 
non-collinear points A, A’ and N the locus of points X such that one angle bisector of the lines XA and XA’ 
passes through N is a strophoid.  

 
Key words: Strophoid, rational cubic curves, plane kinematics, pedal curve, focal curve, equicevian 
curve, Viviani’s curve. 
 

1. INTRODUCTION 
 
The history of plane curves of degree 3 started most 

probably in the late 1600s with Newton’s classification. 
Many prominent mathematicians studied cubics, e.g., 
Clairaut, Plücker, Hesse, Weierstrass, or Poincaré. 

With respect to (‘w.r.t.’, in brief) singularities, there 
are three types of irreducible cubics to distinguish (see, 
e.g., [3, 5]), the cubics with a cusp (type 1), those with a 
node with either two real or two conjugate complex 
tangents (type 2) and those without any singularity (type 
3). By virtue of Plücker’s formulas, cubics of type 3 are 
of class 6 and have 9 real or conjugate complex 
inflection points; cubics with a node are of class 4 and 
have 3 inflection points; cubics with a cusp have the 
class 3 and one inflection point. Only cubics with a 
singularity are rational, i.e., they admit a rational parame-
trization.  

We focus on a particular cubic of type 2, which 
surprisingly shows up as a geometric locus of points at 
many different geometric problems in Euclidean 
geometry. Most of the presented theorems can already be 
found in the literature. 

  
Definition 1: An irreducible cubic is called circular if it 
passes through the absolute circle-points. A circular 
cubic is called strophoid if it has a node with orthogonal 
tangents. A strophoid without an axis of symmetry is 
called oblique, otherwise right (see, e.g., [15], pp. 
37―39, [10], pp. 63―67, [9] or [12]). 

 
In Section 2 we present some of the various 

properties of strophoids. In Section 3 we pick out some 
geometric problems where strophoids play an important 
role as a geometric locus. 

 
2. PROPERTIES OF STROPHOIDS 

 
2.1 Equations of Strophoids  

We use cartesian coordinates (x, y) with the node N as 
origin and with the two tangents t₁, t₂ at N as coordinate 
axes (Fig. 1). Then we can set up the equation of the 
strophoid S as  
 

0))(( 22 =−++ xybyaxyx                (1) 
 
with constants a,b ∈ ℝ ,  (a,b) ı  (0,0). In the cases a  = 0 or 
b = 0 the cubic is reducible; it splits into a circle through N 
and the diameter line y = 0 or x = 0. In the case a = b we 
obtain a right strophoid. 

When using homogeneous coordinates (X₀ : X₁ : X₂) =  
(1 : x  : y) , we obtain the homogeneous equation  
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It reveals that S intersects the line at infinity X₀ =  0 at the 
absolute circle-points (0 : 1 : ±i) and the real point F’ = 
(0 :  b : a) with the (real) asymptote satisfying 
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The conjugate complex tangents to S at the absolute 
circle-points obey the equations 
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They intersect at the point  
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which is called the focal point F of S. It is easy to verify 
that F is again a point of S. The line g, which is ortho-
gonal to NF and passes through F, intersects the cubic in 
the two points 
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which respectively lie on the angle bisectors y  = x  or  y = 
̶x of the orthogonal tangents t₁, t₂  to S at the node N.  

The ratio a : b of the coefficients in (1) can be seen as 
a shape-parameter of the strophoid S. By virtue of eqs. 
(3) and (4), ψ = arctan a/b is the angle between one 
tangent t₁ at the node N and both, either the asymptote or 
the connecting line NF. We can demand 0 <  ψ  ≤  π/4. 
The lower limit defines the reducible case, the maximum 
gives a right strophoid.  

Lines through the node N intersect the cubic in one 
remaining point which we can set up in polar coordinates 
by (x, y) = (r cos φ, r sin φ). Then by (1) we obtain the 
polar equation  
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and the parametrization 
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When we apply the inversion, i.e., the reflection in the 
unit circle K (see Fig. 1), we obtain a curve H with the 
polar equation 
 

ϕϕ cossin
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and the parametrization 
 

,cot bax += ϕ    ϕtanbay += .            (8) 
 
H satisfies the equation 
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This reveals that H is an equilateral hyperbola (Fig. 1). 
The center (a,b) of H is aligned with N and the focal 
point F. 

 

 
 

Fig. 1 The strophoid S is invers to an equilateral hyperbola H 
and the pedal curve of the parabola P. 

 
The polarity in the unit circle K transforms the points (4) 
of the hyperbola H onto lines with the equation 
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Their homogeneous line coordinates (U₀, U₁, U₂) obey 
the equation 
  

,0212010 =++ UUUbUUaU                    (10) 
 

which is satisfied by the line at infinity (U₀, U₁, U₂) =  (1, 
0, 0) as well as by the two tangents t₁ =  (0, 1, 0) and t₂ 
=  (0, 0, 1) of S at the node N. Therefore, eq. (6) is the 
tangential equation of a parabola P. After inverting its 
symmetric coefficient matrix we obtain the homogeneous 
(point-) equation 
 

.01)(2)( 2 =++−− aybxaybx  
 
A dilatation with center N and factor 2 maps the focal 
point F of S onto the focal point F₁ of P (see Figs. 1 and 
3). The directrix m of P passes through N and is parallel 
to the asymptote of the strophoid S. Proofs can be found 
in [1]. 

The product of the polarity and the inversion w.r.t.  
the unit circle K is the pedal transformation w.r.t. the 
origin N. The same is of course valid for all circles with 
center N. This confirms a well-known result (see, e.g., 
[15]). 

 
Theorem 1: The strophoid S is the pedal curve of a 
parabola P w.r.t. the node N, provided N is a point on 
the parabola’s directrix m. On the other hand, the 
inversion in any circle K with center N maps S onto an 
equilateral hyperbola H (see Fig. 1). 
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Fig. 2 Inversions in circles through N and with centers G or G’ 
map the strophoid S  onto itself. Therefore, S  is the envelope of 

circles centered on two confocal parabolas P₁  and P₂. 
 
The inversion in K transforms the reflections in the axes 
of the hyperbola H onto inversions in circles passing 
through the node N. One circle has the center G, the other 
the center G’. The inversion in K maps the circles, which 
are centered on an axis and contact the hyperbola at two 
points, onto circles with double contact with the stro-
phoid S. It can be proved (see [12]) that the centers of 
these circles (see Fig. 2) are located on two confocal pa-
rabolas P₁ and P₂ with the focus F. The axis of these pa-
rabolas is orthogonal to the median line m of S. The asso-
ciated directrices are tangent to S at G or G’. The two 
parabolas contact the negative pedal curve P in points of 
the line NF . 
 
2.2 Associated Points of a Strophoid  

For any point T of the strophoid S,  T ı  N, the line t 
through T and orthogonal to TN is tangent to the parabola 
P, the ‘negative pedal curve’ of S. There are two 
remaining, not necessarily real points Q, Q' of intersec-
tion between t and the strophoid S.  
 
Definition 2: Tangents t of the negative pedal curve P of 
the strophoid S intersect the cubic S beside the pedal 
point T w.r.t. the node N in two real or conjugate 
complex points Q and Q'. We call them associated points 
of the cubic S. 
 
Many properties of strophoids are related to pairs of 
associated points.  

From each finite point Q ∈ S \ {N} two tangent lines 
to the parabola P can be drawn. One of them is normal to 
NQ. The other has, beside the pedal point w.r.t. N, 
exactly one remaining point Q’ of intersection with S. 
Hence, for each point Q ∈ S there exists a unique asso-
ciated point Q’; the relation between Q und Q’ is one-to-
one and symmetric. 
 
Theorem 2: Let S be a strophoid with the node N. For 
any pair (Q, Q’) of associated points of S with Q,Q’≠  N 
the connecting lines QN and Q’N with N are symmetric 
w.r.t. the tangents t₁ and t₂ at  N (see Fig. 3). 
  
Proof: The line connecting the points (6) to the polar 
angles φ and –φ has line coordinates 

  
ϕϕϕϕ 2222

210 cos:sin:cossin:: abUUU −−= , 
 
which satisfy eq. (10). On the other hand, its pedal point 
with respect to N, )/sin,/(cos 44 ab ϕϕ , is in general 
different from G and G’.                                                  □  
 

 
 

Fig. 3 The line t through T ∈ S  and normal to TN intersects S    
beside T in a pair (Q, Q’) of associated points S. 

 
The inversion S → H mentioned in Theorem 1 sends 

associated points of the strophoid S onto diametral points 
of H. Under the polarity H → P in the circle K they are 
mapped onto pairs of tangents which intersect on a line, 
which is orthogonal to FN and passes through the focal 
point F₁ of the parabola  P. 
 
Remark 1: The lines through Q and Q’, respectively 
orthogonal to QN and Q’N, intersect at a point which lies 
together with N, Q and Q’ on a circle (dotted in Fig. 3). 
This is the circumcircle of a trilateral (shaded in Fig. 3), 
which consists of three tangents of the parabola P. 
Therefore the circumcircle contains the focal point F₁ of 
P. Hence, its center lies on the perpendicular bisector of 
the segment NF₁. This bisector passes through F and is 
therefore identical with the line g = GG’ .  This gives rise 
to a ruler-and-compass construction of associated points 
(Q, Q’) on a given tangent t of the parabola P (see Fig. 
3). When Q or Q’ tends to the node N, the circle centered 
on g becomes the osculating circle of one of the two 
branches of S with the origin N. 
 

Some properties of associated points on strophoids 
have a projective background. Therefore we deal in the 
coming subsection with a projective view on cubics of 
type 2. 
 
2.3 Projective Properties of Cubics with a Node 

Let C be a cubic with the node N (Fig. 4). Each line 
through N intersects C beside N in a single point. This 
defines a map of the pencil N of lines onto points of C 
which is one-to-one for lines which differ from the 
tangents t₁, t₂ at N, while both tangents t₁ and t₂ are sent 
to N.  
The following definition refers to this correspondance. 
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Definition 3: Let C be a cubic with the node N. The 
involution in the pencil N with the two tangents t₁, t₂ at N 
as fixed lines induces an involution α of type 1 on C. Any 
involution in the pencil N which interchanges t₁ and t₂ 
induces an involution β of type 2 on C.   

 

 
 

Fig. 4 On the cubic C  with the node N we consider involutions 
α, β and β’= α ○ β which commute pairwise.  

 
Lemma 1: 
1. For any involution β of type 2 on C, all lines which 

connect corresponding points X, Xβ  ∈ C, X ≠ Xβ , have 
a point Z ∈ C \{N} in common, the center of β. Also 
the tangent lines at the fixed points Y and Y' of β pass 
through the center Z (see Fig. 4). 

2. Each involution β of type 2 commutes with the 
involution α of type 1. Therefore α maps each pair (X, 
Xβ) of points corresponding under β again onto such 
a pair, and vice versa. In particular, the fixed points 
Y and Y' of β are corresponding under α. 

3. Each involution β of type 2 defines another involution 
β’ = α ○ β  = β ○ α of type 2, and the involutions α, β 
and β’ commute pairwise. The centers Z of β and Z' of 
β’ are corresponding under α. 

4. The lines connecting Z' with corresponding points X, 
Xβ ∈ C \ {N, Z'}, constitute an involution in the pencil 
Z'. This involution keeps the line Z'N fixed as well as 
the line through the fixed points of β (Fig. 4). 

5. For each quadrangle formed by pairs of points (X, X') 
and (Y, Y'), both corresponding under α, the diagonal 
points XY ∩ X'Y' and XY' ∩ X'Y lie on C, and they are 
corresponding under α, as well. 

 
Proof: In the line pencil N and likewise on C, two dif-
ferent involutions commute if and only if the fixed lines 
of one involution are corresponding under the other 
involution. Exactly in this case the composition β’ = α ○ β 
is an involution, too. For further details on the proof of 
items 1―5 we refer to the proof of Lemma 7 in [1]. 

Item 6 follows, since for any given pair (X, Y), X,Y ∈ 
C \{N}, there is an involution β of the second kind with X 
→ Y, and, by item 2, at the same time with X’ → Y’. On 
the other hand, for any given point Z ∈ C \{N} there is 
such an involution β with the center Z.                            □  
 
2.4 Metrical Properties of Strophoids 

 Now we apply Lemma 1 to strophoids S. By virtue of 
Theorem 2, associated points on S are exactly corre- 
sponding under the involution α of type 1.  
 
Theorem 3: Let S be any strophoid.   
1. For S, the focal point F and the real point F’ at 

infinity are associated. 
2. The midpoint of associated points X, X' lies on the line 

m through N which is parallel to the asymptote. 
3. The tangents of S at associated points X, X' meet each 

other at the point T' ∈ C,  which is associated to the 
pedal point T on the line t = XX' w.r.t. N. 

4. For any point P ∈ S, the lines PX and PX' are sym- 
metric w.r.t. the line which connects P with the node 
N. 

5. For any quadrangle formed by two pairs (X, X') and 
(Y, Y') of associated points of S the sides XY, YX’, 
X’Y’ and Y’X are tangent to a circle with center N. 
Therefore an alternate sum of their lengths vanishes.   

 
Proof: Let β be the involution on S, which is induced by 
pairs of orthogonal lines through N. The absolute circle-
points are the fixed points; therefore the focal point F of 
S is the center, and the remaining point F’ at infinity is 
associated to F. By Lemma 1, item 4, the lines connect-
ing F’ with pairs (P, P’) of associated points as well as 
those of β are symmetric with respect to the median line 
m = F’N. The involution of lines Z’X →  Z’X’ mentioned 
in Lemma 1, item 4, includes also the  two isotropic lines 
through Z’. As a consequence, the pairs Z’X and Z’X’ are 
symmetric w.r.t. Z’N.  
By virtue of items 1 and 2 of Lemma 1, the lines tangent 
to S at any pair (Q, Q') of associated points intersect each 
other at a point T’ which is associated to the pedal point 
T of the line QQ’ w.r.t. N. Due to the class 4 of S, beside 
the tangent of S at T’, not more than two tangents of S 
can be drawn through T’.                                                 □ 
 
Remark 2: Corresponding points X, Xβ  of the involution 
β mentioned above, bound a diameter of a circle which is 
centered on the line m and passes through the node N. 
The diameter line connecting X and Xβ  passes through 
the focal point F. Beside the circles defined in Remark 1 
(Fig. 3), also these circles with diameter X-Xβ  can be 
used for a pointwise construction of the strophoid [12]. 
 

In Figs. 1 and 3 we  find several pairs of associated 
points on S – beside the absolute circle points and (F, 
F'): On the line g we have (G, G'); their tangents are 
parallel to m. The line t passing through T orthogonal to 
NT, contains the pair (Q, Q'). By virtue of Theorem 3, 
item 3, the tangents at these pairs intersect at a point of S.  
The tangential equation (6) of P shows  that the two 
tangents t₁, t₂  of S at the node N are also tangent to P. 
Hence, point N is self-associated.  
 
Remark 3: By the same token, for circular cubics C with 
a node N the following statements are equivalent:  (i)  the 
tangents at N are orthogonal, (ii) the two absolute circle-
points are associated, and (iii) the focal point F is a point 
of the cubic C. In this sense, Definition 1 of strophoids 
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could be modified. Furthermore, the property claimed in 
Lemma 1, item 1, characterizes associated points on S. 
 

We recall, that for three points A, A’ and N on a line l 
the locus of points X, for which the line XN bisects the 
angle between the lines XA and XA’, is a circle centered 
on the line l. This is the so-called circle of Apollonius. 
But also points on the line l itself satisfy the required 
condition; hence, the complete geometric locus is a 
reducible cubic. The following generalization is closely 
related to item 4 of Theorem 3.   

 
Theorem 4: Let A, A’ and N be three non-collinear 
points such that N does not lie on the perpendicular 
bisector of the segment AA’. Then the locus of points X 
with the property that one angle bisector of the two lines 
XA and XA’ passes through N is a strophoid S with N  as 
its node and (A, A’) as a pair of associated points (see 
Fig. 5). The respective second angle bisectors envelope a 
parabola P, the negative pedal curve of S w.r.t. N.  
This is also valid when A’ is a point at infinity; then A is 
the focal point of S. 
 
Proof: There is a unique strophoid S with the node N and 
with (A, A’)  as a pair of associated points. This follows 
from the property, that there is a unique parabola P 
which contacts the following four lines: the angle bi-
sectors of NA and NA’ and the lines through A and A’ 
which respectively are orthogonal to NA and NA’. The 
wanted strophoid is the pedal curve of P.  
All points X of the strophoid S satisfy the required condi- 
tion. However, there are no other points for the following 
reason: On each line h through N there is at most one 
point Y with this property, since the line YA’ must pass 
through the mirror point of A w.r.t. h.                            □  
 

 
 

Fig. 5 The strophoid S is the locus of points X such that XN 
bisects the angle between XA and XA’, which holds for all pairs 

of associated points (A, A’) of  S. 
 
3. STROPHOIDS AS A GEOMETRIC LOCUS 
 
3.1 Strophoids and conics 

As a consequence of Theorem 4, strophoids play a 
role for conics in the following sense.  
 
Theorem 5: Let (A , a) and (A’, a’)  be two given line 
elements with A ∉ a’ and A’ ∉ a  such that a and a’ are not 
symmetric w.r.t. the perpendicular bisector of the  seg-

ment AA’ (Fig. 6). Then the locus of focal points of all 
conics through the given line elements is a strophoid with 
A and A’ as associated points and the point  N = a ∩ a’ 
as its node. The pairs of the real focal points as well as 
of the imaginary ones are associated, too. Their con- 
necting lines, i.e., the axes of the conics, are tangent to a 
parabola. 
 

 
 

Fig. 6 The strophoid S is the focal curve of a pencil of conics 
sharing two line elements (A, a) and (A’, a’). 

 
Proof: With respect to any conic C of the pencil under 
consideration, N is the pole of the chord AA’. Focal 
points Q of C are characterized by the property that the 
line  QN bisects an angle between QA and QA’. This can 
be concluded from Desargues’ involution theorem: The 
pencil of conics contains the pair of line pencils (A, A’) 
as well as the twofold counted pencil N as reducible 
curves. On the other hand, the tangents drawn from Q to 
the conic C are isotropic. Thus, by virtue Theorem 4, the 
locus of focal points is a strophoid.                                 □ 
 
Theorem 6: Let A, A’ and N be three non-collinear 
points. Then for all conics C with focal points A and A’ 
the points T and T' of contact with tangents passing 
through N is the strophoid S with node N and A and A’ 
as a pair of associated points (Fig. 7). S is also the locus 
of pedal points of normal lines drawn from point N to the 
confocal conics. 
For all conics C of this confocal family, the normal lines 
at the points T of S as well as the polar lines TT’ of N 
w.r.t. C are tangent to a parabola P, the so-called 
Chasles parabola of N w.r.t. the confocal family.  

 
Proof: The line TN is a bisector of TA and TA’. This 
characterizes the requested points of contact. The rest 
follows from Theorem 4. In the confocal family there are 
two conics passing through T. When the line TN is 
tangent to one of them, then it is orthogonal to the other. 
Hence S is also the locus of pedal points of normals 
drawn from N to the conics.                                             □ 
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Fig. 7 For tangents drawn from a fixed point N to the conics of 
a confocal family, the points T, T' of contact lie on a strophoid 
S. At the same time is S is the locus of pedal points of normals 

drawn from  N onto the confocal conics.  
 
3.2 Perspective of Viviani’s curve 

Viviani’s curve (or Viviani’s window) V is defined as 
the curve of intersection between a sphere with radius r 
and a right cylinder with radius r/2, which contacts the 
sphere at a point N. We choose the cylinders’s axis in 
vertical position. 

  

 
 

Fig. 8 Viviani’s window can be projected onto a strophoid.  
 
V is a curve of degree 4 with orthogonal tangents at 

N, and it passes through the absolute circle-points of the 
horizontal planes. We specify any horizontal plane as 
image plane of a perspective, whose center C lies on V 
(Fig. 8). Then the image of V is a circular cubic with a 
node. Since V is also located on a right cone with apex N 

and 45° inclination, the orthogonal node tangents have 
also orthogonal images (compare [11]).  

By the same token, Viviani’s window is also located 
on a torus [8] (Fig. 9). Let N be the initial point for 
measuring the geographic longitude and latitude on the 
sphere; then V is the locus of points with equal longitude 
and latitude (Fig. 10). As a consequence, V is the locus 
of mirror points of N under reflection in diameter planes 
with 45°-inclination. Therefore, V is also a spherical 
trochoid: both polodes are circles with radius π/4; in the 
initial pose the moving point coincides with the center of 
the fixed polode. 

 

 
 

Fig. 9 Viviani’s window V in top, front and side view. V is 
located on a sphere, a cylinder, a cone, and a torus.   

 

 
 

Fig. 10 For points of Viviani’s window V  the geographic 
longitude and latitude are equal.  

 
3.3 Bricard’s Flexible Octahedron, Type 3 

According to R. Bricard (1899) there are three types 
of flexible octahedra (compare, e.g., [14] and the refer-
ences therein; recent n-dimensional generalizations can 
be found in [6]). Those of type 3 have the property that 
they admit two flat poses. Such a pose can be obtained in 
the following way (Fig. 11): choose two dif-ferent circles 
with center M and two points A, A’ outside the bigger 
one. Then, for each circle, intersect tangents drawn from 
A with those drawn from A’ and select two opposite 
points. This gives finally two pairs (B, B’) and (C, C’) 
which together with A and A’ build the three pairs of 
oppositve vertices. The octahedron consists then of the 
eight triangles ABC, ABC’, AB’C, ..., A’B’C’. 
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Since for B and B’ as well as for C and C’ one angle 
bisector of the connections with A and A’ passes through 
M, by virtue of Theorem 4, all 6 points are located on a 
strophoid with the node M, and they are pairwise asso-
ciated. As a consequence, also the lines BC, BC’ and B’C 
and B’C’ send an angle bisector through M (Fig. 12).  

 

 
 

Fig. 11 Due to R. Bricard, the flexible octahedra of type 3 
admit two flat poses with have local symmetries – as depicted. 

 
Theorem 6: For any strophoid S, each triple of associ-
ated pairs (A, A’), (B, B’) and (C, C’) defines a flat pose 
of a flexible octahedron.  

 

 
 

Fig. 12 For defining a flat pose of a type-3 flexible octahedron, 
the pairs of opposite vertices can be specified as associated 

points on a strophoid. 
 
3.4 Euclidean Circle-Point Curve 

A classical problem in plane kinematics is the 
question, for which moving points X there is instan-
taneously a 4-point contact between their trajectory and 
the circle of curvature. The requested locus is a cubic 
curve [4] which satisfies the equation 
 

03])'*'()2*)[(( 222 =+−−−+ xyyyx κκκκ  ,  

 
provided the pole P is the origin and the pole tangent the 
x-axis of the coordinate system. κ and κ* are the instant 
curvatures of the polodes, and κ’ and κ*’ are the deriva-
tives with respect to the arc-length of the polodes. Upon 
comparison with eq. (1) we learn that the circle-point 
curve S  is a strophoid. The same holds for the locus S* 
of curvature centers which turns out to be the circle-point 
curve of the inverse motion (Fig. 13). 

For a graphical construction of the circle-point curve 
it is standard (e.g., [16], p. 193) to use a map X = (x,  y) → 
X = (x, y), which is defined as follows: For any point X 
determine the perpendicular bisector of the segment XN. 
This bisector intersects the pole tangent and the pole 
normal at two points. The image X of X forms with these 
two points and the pole N a rectangle. We compute  
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which reveals that the strophoid S is mapped onto the 
line  S = g. We conclude 

 
Theorem 7: There is a cubic transformation X →  X  
which maps the strophoid S onto the line S = g being 
orthogonal to FN and passing  through F.  
 
It should be noted that the analogue curves in spherical 
as well as in hyperbolic kinematics are closely related to 
strophoids (see [13, 7]).  
 

 
 

Fig. 13 In plane Euclidean kinematics, the circle-point curve S 
and the center-point curve S* are strophoids. 

 
3.5 Equicevian Points 

Let ABC be any triangle and P a point outside the 
side-lines. On the lines connecting P with the vertices, 
the segments bounded by one vertex and by the point of 
intersection with the opposite sideline are called cevians 
of P. It is proved in [1] and [2] that the locus of points, 
for which the cevians with two fixed vertices have equal 
lengths, is a strophoid. It turns out that the focal points of 
the Steiner circumellipse of ABC are the only equicevian 
points, i.e., points for which all three cevians have the 
same length (Fig. 14). 
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Fig. 14 The equicevian points of a triangle are the common 
points of the three equicevian cubics. 

 
4. CONCLUSION 
 

The aim of this paper was to emphasize that stro-
phoids, i.e., circular cubics with orthogonal node tan-
gents, play an important role at various problems in 
Euclidean geometry. Many of the presented theorems 
date already back to the 19th century, but are almost 
forgotten. However, these curves still deserve interest 
since with the aid of dynamic geometric software it is 
now possible to visualize many of their remarkable 
properties. 
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