Dumitru MARIN, Ligia PETRESCU

GRAPHO-ANALYTICAL STUDIES OF LINIAR EQUATION SYSTEMS

Abstract

The paper presents the solving of linear three variables system using two methods: analytic and graphic methods. The solving of a such system implies four cases: compatible system with unique solution, simple-indeterminate compatible system, double-indeterminate compatible system and incompatible (impossible) system. The correspondence between the analytic (synthetic) method and the graphic (visual) method is evident for the three space fundamental elements: point, line and plane.

Key words: equation, in/compatible system, plane, line, point.

1. INTRODUCTION

The linear three variables system and three unknowns quantities implies four cases:

- a unique solution compatible system,
- simple - indeterminate compatible system;
- double - indeterminate compatible system;
- incompatible (impossible) system.

Could the high school students imagine a graphic solution when they solve a linear three equations and three unknown quantities system?

Could first year technical universities students imagine that the three fundamental elements of the space: point, line and plane (used in descriptive geometry) have an analytic correspondence?

We think that the answer is negative in a great proportion for both questions.

This paper presents a study and a correspondence between analytic and graphic method.

2. COMPATIBLE SYSTEM WITH UNIQUE SOLUTION

We have the following system:

$$
\left\{\begin{array}{c}
x+y+z=3 \tag{1}\\
x+y+2 z=4 \\
x+2 y=3
\end{array}\right.
$$

The system solution is unique and it can be obtained by using every known method:

$$
\begin{equation*}
x=1, y=1, z=1 \tag{2}
\end{equation*}
$$

The three equations of the system (1) are the three planes ([P], [R] and [S]) equations (Fig.1) used in analytic geometry. The plane [P] equation is:

$$
\begin{equation*}
x+y+z=3 \tag{3}
\end{equation*}
$$

The planes [H], [V] and [L] equations are:

$$
\begin{equation*}
z=0 ; y=0 ; x=0 \tag{4}
\end{equation*}
$$

$[\mathrm{P}],[\mathrm{H}]$ and $[\mathrm{V}]$ planes intersection is the P_{x} point on Ox axis.

$$
\left\{\begin{array}{c}
x+y+z=3 \tag{5}\\
z=0 \\
y=0
\end{array}\right.
$$

System (5) solution is:

$$
\begin{equation*}
x=3=O P_{x} \tag{6}
\end{equation*}
$$

We can similarly obtain P_{y} and P_{z} point's position:

$$
\begin{equation*}
y=3=O P_{y} ; z=3=O P_{z} \tag{7}
\end{equation*}
$$

The $[\mathrm{P}]$ and $[\mathrm{H}]$ planes intersect in line $P_{x} P_{y}$, the plane horizontal trace:

$$
\left\{\begin{array}{c}
x+y+z=3 \tag{8}\\
z=0
\end{array}\right.
$$

System (8) solution is:

$$
\begin{equation*}
x+y=3 \tag{9}
\end{equation*}
$$

meaning $P_{x} P_{y}$ horizontal trace equation.
We can similarly obtain vertical and lateral trace equations of the $[\mathrm{P}]$ plane.

$$
\begin{align*}
& P_{x} P_{z} \rightarrow x+z=3 \tag{10}\\
& P_{y} P_{z} \rightarrow y+z=3 \tag{11}
\end{align*}
$$

$[R]$ plane equation is:

$$
\begin{equation*}
x+y+2 z=4 \tag{12}
\end{equation*}
$$

$[\mathrm{R}],[\mathrm{H}]$ and [V] planes intersection is R_{x} point on Ox axis (Fig.2):

$$
\left\{\begin{array}{c}
x+y+2 z=4 \tag{13}\\
z=0 \\
y=0
\end{array}\right.
$$

Fig. 1 3D - [P], [R] and [S] planes representation.

System's (13) solution is:

$$
\begin{equation*}
x=4=O R_{x} \tag{14}
\end{equation*}
$$

We can similarly obtain R_{y} and R_{z} points position:

$$
\begin{equation*}
y=4=O R_{y} ; z=2=O R_{z} \tag{15}
\end{equation*}
$$

The $[\mathrm{R}]$ and $[\mathrm{H}]$ planes intersection is line $R_{x} R_{y}$, the plane horizontal trace (Fig.2):

$$
\left\{\begin{array}{c}
x+y+2 z=4 \tag{16}\\
z=0
\end{array}\right.
$$

$$
\begin{equation*}
\Rightarrow x+y=4 \tag{17}
\end{equation*}
$$

meaning $R_{x} R_{y}$ horizontal trace equation.
We can similarly obtain vertical and lateral trace equations of the $[R]$ plane:

$$
\begin{align*}
& R_{x} R_{z} \rightarrow x+2 z=4 \tag{18}\\
& R_{y} R_{z} \rightarrow y+2 z=4 \tag{19}
\end{align*}
$$

The [P] and [R] planes intersection is level line $V L\left(v l, v^{\prime} l^{\prime}, v^{\prime \prime} l "\right)$ because their horizontal traces are parallel:

$$
\left\{\begin{array}{c}
x+y+z=3 \tag{20}\\
x+y+2 z=4
\end{array}\right.
$$

System (20) solution is:

$$
\begin{equation*}
z=1 \tag{21}
\end{equation*}
$$

meaning vertical projection equation ($v^{\prime} l^{\prime}$) of level line $V L$ (Fig.2).

Horizontal projection equation ($v l$) of level line $V L$ (Fig.2) is:

$$
\begin{equation*}
x+y=2 \tag{22}
\end{equation*}
$$

[S] vertical plane equation is:

$$
\begin{equation*}
x+2 y=3 ; \forall z \tag{23}
\end{equation*}
$$

$[\mathrm{P}]$ and [S] planes intersection is line $S_{x} L_{1}$.
$V L$ and $S_{x} L_{l}$ line intersection is the point $I\left(i, i^{\prime} i^{\prime \prime}\right)$.
The point $I(1,1,1)$ is the unique solution in our case.

3. SIMPLE-INDETERMINATE COMPATIBLE SYSTEM

We have the system:

$$
\left\{\begin{array}{c}
x+y+z=3 \tag{24}\\
x+y+2 z=4 \\
x+y+3 z=5
\end{array}\right.
$$

We notice that the unique solution (using every known method) is:

$$
\begin{equation*}
z=1 \tag{25}
\end{equation*}
$$

In this case there is a simple - indeterminate compatible system because we obtain for the three equations:

$$
\begin{equation*}
x+y=2 \tag{26}
\end{equation*}
$$

$x=p, y=2-p, z=1$ are the system solutions and they depend on \boldsymbol{p} parameter: $p \in(-\infty,+\infty)$. The three planes in (24) system intersect in a level line because their horizontal traces are parallel (Fig. 3). Vl level line equation is:

$$
\left\{\begin{array}{c}
x+y=2 \tag{27}\\
z=1
\end{array}\right.
$$

In Figure 3, we did not write all notations in order to simplify the graphic representation. In Figure 4, the level line $V L$ is obvious because there is an infinity system's solution. For example: for $p=1$ results $M(1 ; 1 ; 1)$; for $p=0,5$ results $N(0,5 ; 1,5 ; 1)$.

4. DOUBLE - INDETERMINATE COMPATIBLE SYSTEM

We have the system:

$$
\left\{\begin{array}{c}
x+y+z=3 \tag{28}\\
2 x+2 y+2 z=6 \\
3 x+3 y+3 z=9
\end{array}\right.
$$

The three equations are equivalent, so the system is reduced to a single equation, the $[\mathrm{P}]$ plane equation (Fig.5).

$$
\begin{equation*}
x+y+z=3 \tag{29}
\end{equation*}
$$

The system is a double- indeterminate compatible because its solutions depend on two parameters:

Fig. 3 The three planes intersection.

Fig. 4 The level line $V L$ solution

Fig. 5 The double- indeterminate system.

$$
\begin{equation*}
x=p ; y=q ; z=3-p-q \tag{30}
\end{equation*}
$$

In Figure 5, the point A has the coordinates:
$x=O a_{x}=p ; y=O a_{y}=q$ and it is placed on a level line.
In Descriptive Geometry, the point A is placed in [P] plane if two of its coordinates are known.

Fig. 6 The points A and B placed in [P] plane, using a level line.

Fig. 7 The three planes intersection.

Fig. 8 The three planes intersection.

For example: $A(1,1, z) ; x=1, y=1, \Rightarrow z=1 ; B(0.5, y, 1)$ $x=0.5, z=1 \Rightarrow y=1.5$ (see Figure 6). The points A and B were placed in $[\mathrm{P}]$ plane, by using a level line.

5. INCOMPATIBLE (IMPOSSIBLE) SYSTEM

We have the system:

$$
\left\{\begin{array}{c}
x+y+z=3 \tag{31}\\
x+y+2 z=4 \\
2 x+2 y+z=4
\end{array}\right.
$$

We obtain three distinct values for $z(z=1 ; z=2$; $z=4 / 3$), by solving the system equations. In this case the system is impossible. The three planes intersect in three parallel level lines, because their horizontal traces are parallel: $P_{x} P_{y} / / R_{x} R_{y} / / S_{x} S_{y} ; N_{1} / / N_{2} / / N_{3} \quad$ (Fig. 7 and Fig. 8).

Observation: We used simple equations for the three planes in order to a clear graphic representation. We only used the first trihedral representation (x, y, z positive).

6. CONCLUSIONS

- In this paper we used: algebra, analytic geometry, descriptive geometry notions in order to demonstrate (to prove) the connection between these disciplines and to understand the mathematical essential elements.
- The paper has a didactic character and it is especially useful for technical universities' students. They can better understand the correspondence between analytical equations and their graphical representations.
- The method used in this paper can be extended at the graphical-analytical study of the other surfaces: cylinder, cone, sphere a. s. o.

REFERENCES

[1] Marin, D (2008). Geometrie Descriptivă. Teorie şi aplicaţii, Editura BREN, Bucuresti, ISBN 973-648-192-1.
[2] Marin, D., Petrescu, L. (2015). Grafică inginerească, Editura BREN, Bucuresti, ISBN 978-606-610-040-3.
[3] Petrescu, L.C.M (2015). Engineering Graphics, Editura BREN, Bucuresti, ISBN 978-606-610-132-5.
[4] Postelnicu, V., Coatu, S. (1980). Mică enciclopedie matematică, Editura Tehnică, Bucuresti.

Authors:

Professor Dr. Eng. Marin Dumitru, "Politehnica" University of Bucharest, Department of Engineering Graphics and Industrial Design.
E-mail: dumarpub@yahoo.com. Phone: 0214029108.
Associated professor Dr. Eng. Petrescu Ligia, "Politehnica" University of Bucharest, Department of Engineering Graphics and Industrial Design.
E-mail: ligiapetrescu@yahoo.com. Phone: 0214029108.

