COMPLEX HEAT EXCHANGERS – THE COMBINATION OF FRACTAL GEOMETRY AND ADDITIVE MANUFACTURING

  • Kevin NOACK Technische Universitat Dresden
  • Martin Friedrich EICHENAUER, Technische Universitat Dresden
  • Daniel LORDICK Technische Universitat Dresden
Keywords: Heat Exchanger, Biomimetics, Fractal Geometry, Space-Filling Curves, Lindenmayer-System, Form-Finding Methods, Computer-Aided Design, Additive Manufacturing

Abstract

Complex structures for heat exchangers in high-temperature applications are developed in the research project instaf. The driving force behind these developments is the new design freedom given by the additive manufacturing (AM) of ceramics. With this technology, the complexity of form is no longer an obstacle for profitable solutions. The application of fractals in this context is very promising, since it takes advantage of the new freedom while on the other hand the algorithms for the generation of such forms are relatively easy to handle. This paper presents some proposals for heat exchangers or mixing structures, which are inspired by natural formations. The underlying assumption is: the efficiency of a heat exchanger increases with the surface area of the wall between the fluids. The surfaces here are derived from a series of fractal curves within a given outer shape. The algorithms for the curves use the Lindemayer system (Lsystem), which allows for steering a large variety of curves systematically.

Author Biographies

Kevin NOACK, Technische Universitat Dresden

Technische Universitat Dresden, Department of Mathematics, Institute of Geometry.

Martin Friedrich EICHENAUER,, Technische Universitat Dresden

Technische Universitat Dresden, Department of Mathematics, Institute of Geometry.

Daniel LORDICK, Technische Universitat Dresden

Head of Geometric Modeling and Visualization, Technische Universitat Dresden, Department of Mathematics, Institute of Geometry,

References

1 Noack, K., Eichenauer, M., Lordick, D., Scheithauer, U. and Abel, J. (2018). Additive Fertigung von Hochleistungswärmetauschern unter Verwendung fraktaler Strukturen. Potsdam:
Tagungsband Fachtagung Werkstoffe und Additive Fertigung, pp. 91-96.
2 Eichenauer, M., Noack, K. and Lordick, D. (2018). Mixing of Fluids with Space-Filling Curves. Milan: Proceedings of the 18th International Conference on Geometry and Graphics (ISBN: 978-3-319-95588-9).
3 Mandelbrot, B. (1982). The Fractal Geometry of Nature. Times Books.
4 Sagan, H. (1994). Space-Filling Curves. New York: Springer Science+Business Media.
5 Prusinkiwicz, P. and Lindenmayer, A. (1990). The Algorithmic Beauty of Plants. New York: 1 edn.
6 Saupe, D. (1987). Algorithms for random fractals.
7 Braun, M. (1905). Zoology, ed. 29, pp. 145-149.
8 Scholander, P. and Schevill, W. (1955). Counter-Current Vascular Heat Exchange in the Fins of Whales. Journal of Allied Psychology.
9 Peitgen, H., Jurgens, H., Saupe, D. (2004). Chaos and Fractals. New Frontiers of Science: Springer Science (ISBN: 0-387-20229-3).
10 URL: https://www.weltderphysik.de/thema/chaosund-ordnung/fraktale/ [Accessed at 21 December 2018]
11 Behrends, E. (1994). Fraktale und Mathematik – eine elementare Einführung. Berlin: Vorlesungen zum Gedenken an Felix Hausdorff, pp. 191-206.
12 Scheufele, K. (2007). Zufallige Fraktale.
13 URL: https://www.cfdsupport.com/OpenFOAMTraining-by-CFD-Support/node334.html [Accessed at 10 January 2019]
Published
2019-05-10
How to Cite
NOACK, K., EICHENAUER, M. F., & LORDICK, D. (2019). COMPLEX HEAT EXCHANGERS – THE COMBINATION OF FRACTAL GEOMETRY AND ADDITIVE MANUFACTURING. Journal of Industrial Design and Engineering Graphics, 14(1), 35-40. Retrieved from http://sorging.ro/jideg/index.php/jid/article/view/421
Section
Articles